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Recent studies have shown that the greenness index derived from digital camera imagery has high spatial
and temporal resolution. These findings indicate that it can not only provide a reasonable characterization
of canopy seasonal variation but also make it possible to optimize ecological models. To examine this possi-
bility, we evaluated the application of digital camera imagery for monitoring winter wheat phenology and
modeling gross primary production (GPP).
By combining the data for the green cover fraction and for GPP, we first compared 2 different indices (the
ratio greenness index (green-to-red ratio, G/R) and the relative greenness index (green to sum value, G%))
extracted from digital images obtained repeatedly over time and confirmed that G/R was best suited for
tracking canopy status. Second, the key phenological stages were estimated using a time series of G/R values.
The mean difference between the observed phenological dates and the dates determined from field data was
3.3 days in 2011 and 4 days in 2012, suggesting that digital camera imagery can provide high-quality ground
phenological data.
Furthermore, we attempted to use the data (greenness index and meteorological data in 2011) to optimize a
light use efficiency (LUE) model and to use the optimal parameters to simulate the daily GPP in 2012. A high
correlation (R2 = 0.90) was found between the values of LUE-based GPP and eddy covariance (EC) tower-
based GPP, showing that the greenness index and meteorological data can be used to predict the daily GPP.
This finding provides a new method for interpolating GPP data and an approach to the estimation of the
temporal and spatial distributions of photosynthetic productivity.
In this study, we expanded the potential use of the greenness index derived from digital camera imagery by
combining it with the LUEmodel in an analysis of well-managed cropland. The successful application of digital
camera imagery will improve our knowledge of ecosystem processes at the temporal and spatial levels.

© 2013 . Published by Elsevier B.V. All rights reserved.
1. Introduction

Phenology is the study of the timing of recurring biological events
and the causes of the changes in this timing produced by biotic and
abiotic factors (Lieth, 1976; Zhu andWan, 1973). Phenological studies
have a long tradition in agriculture. The knowledge of the annual
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timing of crop phenological stages and their variability can help to
improve crop yield and food quality by providing dates for timely
irrigation, fertilization, and crop protection (Mirjana and Vulić,
2005). In agro-meteorological studies, phenological data are used
to analyze crop–weather relationships and to describe or model the
phyto-climate (Frank, 2003). Furthermore, phenological data are
one of the most important components of ecosystem and dynamic
vegetation models (Arora and Boer, 2005; Dragoni et al., 2011). Only
accurate descriptions of phenology and canopy development in eco-
system models can produce reasonable carbon budgets at regional
and global scales (Gitelson et al., 2012; Richardson et al., 2012).
Thus, the ability to accurately model and predict seasonal canopy de-
velopment is essential.

Generally, 2 methods are used to acquire phenological data: direct
observation and satellite-based observation. Phenological field sta-
tions that rely on data gathered by direct human observation provide
relatively accurate phenological stages (Bowers and Dimmitt, 1994;
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Menzel and Fabian, 1999). However, the sparsely distributed stations
located in limited geographical areas have poor spatial coverage, and
phenological data are inadequate to characterize the continuous de-
velopment of vegetation (Schwartz et al., 2002; White et al., 2005).
Although remote sensing data from sources such as the advanced very
high-resolution radiometer (AVHRR), the moderate resolution imaging
spectroradiometer (MODIS), and Landsat are used in detecting spatial
patterns of global-scale phenology (Ganguly et al., 2010; Heumann et
al., 2007; Moulin et al., 1997; Soudani et al., 2012; Zhu et al., 2012), ex-
ogenous factors such as atmospheric effects (e.g., cloud contamination,
haze) and data processingmethods limit the quality of satellite observa-
tions and produce variation in the results. For this reason, there remains
a crucial need for precise field data that can be used to understand and
validate satellite data (Studer et al., 2007). In this context, the most im-
portant point is the large gap between spatially integrated information
from satellite sensors and point observations of phenological events at
the species level (Linderholm, 2006; Schwartz and Reed, 1999).

In the past few years, significant improvements in electronic im-
aging technologies have made digital camera technology increasingly
popular. As a new method for near-surface remote sensing, digital
camera technology, which combines the advantages of traditional
field phenological observations with remote sensing observations,
has shown great potential in monitoring phenological events in vari-
ous ecosystems including forests and grassland (Fisher et al., 2006;
Hufkens et al., 2012; Richardson et al., 2009; Saitoh et al., 2012;
Wingate et al., 2008).

Recently, the relationship between the timing of phenological
events and carbon flux has received increasing attention (Ahrends
et al., 2009; Baldocchi et al., 2001; Kindermann et al., 1996). Previous
research has indicated that farmland ecosystems, especially in mid-
latitudes, contribute substantially to the regional carbon dioxide
budget (Soegaard et al., 2003). As a key parameter of the carbon
cycle, GPP can be used to evaluate the effects of climate variation or
crop management on food production. However, the lack of an accu-
rate description of phenology and canopy status in ecosystem models
restricts the accuracy of GPP simulations. Thus, to develop improved
simulation models of carbon flux, we need more accurate seasonal
phenological data for the canopy (Chiang and Brown, 2007). Real-
time canopy status information extracted from digital camera photog-
raphy can allow the optimization of GPP models. To the best of our
knowledge, data derived from digital camera images have seldom
been used in efforts to optimize GPP models (Migliavacca et al.,
2011). As a commonmethod of estimating GPP, the light use efficiency
(LUE) model has been used at various scales. Optimizing the LUE
model based on canopy greenness data obtained from digital photog-
raphy and on CO2 flux measured from eddy covariance towers might
be useful for several reasons. First, this approach might augment
the methodology used to acquire data for ecological studies. Second,
it might improve the accuracy of modeling canopy phenology and
daily GPP at the ecosystem scale.

In China, phenological stations and conventional phenological
data are relatively scarce. Both are associated primarily with natural
ecosystems; in contrast, they seldom offer phenological coverage
of farmland (Chen et al., 2005). The North China Plain is situated on
sediments deposited by the Yellow River and is located between
114–121°E and 32–40°N. It includes 2 metropolitan centers (Beijing
and Tianjin) and 5 provinces (Anhui, Hebei, Henan, Jiangsu, and
Shandong; Liu et al., 2001). It is the largest and most important agri-
cultural area of China and is also known as the “Granary of China.” It
encompasses an agricultural area of approximately 1.8 × 105 km2

(Wu et al., 2006), producing more than 50% of the nation's wheat
supply (Kendy et al., 2003). To date, to the best of our knowledge,
no attempts have been made to use digital camera imagery to moni-
tor crop phenology and optimize carbon dioxide flux models in China.

In this study, we analyzed time series of color indices of winter
wheat obtained from digital camera imagery during 2011 and 2012.
Our primary goal is to address the following research questions:
(1) Can digital camera imagery be used to characterize the seasonal
dynamics of winter wheat? (2) Can digital camera imagery be used
as an additional source to evaluate the potential of the LUE model
for estimating the daily GPP of winter wheat at the site level? The
aim of the study is to create a Digital Camera Phenological Observation
Network in China and to increase the understanding of the seasonal
covariation between GPP and phenology at the ecosystem scale.

2. Materials and methods

2.1. Site description

The study was conducted at Yucheng Comprehensive Experimen-
tal Station (36°27′N, 116°38′E, 20 m elevation), located in the North
China Plain within the East Asian Monsoon region. The climate of
this region is warm temperate and semi-humid. Over the past
30 years, the mean temperature and mean precipitation of this area
were approximately 13.1 °C and 528 mm, respectively. Nearly 60%
of the summer precipitation occurs from June through August. The
parent soil materials are alluviums from the Yellow River. The soil
texture of the root zone is sandy loam (Li et al., 2006). Winter
wheat (Triticum aestivum L) is usually sown in early October and
harvested in mid-June. The life cycle of winter wheat is shown in
Table 1.

2.2. Camera images and image analysis

Canopy imageswere collected using a commercial webcam (model
214; Axis Communications, Lund, Sweden) installed in aweatherproof
enclosure at a height of 4 m above the ground. The camera featured
a Sony Corp. 1/4″Wfine progressive scan red-green-blue (RGB) silicon
charge-coupled device. The red, green, and blue channels had peak
sensitivities at wavelengths of 620, 540, and 470 nm, respectively
(full technical specifications are available online, http://www.sony.
net/Products/SC-HP/datasheet/90203/data/a6811217.pdf).

The camera provided half-hourly JPEG images (image resolution
of 384 ∗ 288 with 3 color channels of 8-bit RGB color information,
i.e., digital numbers ranging from 0 to 255) from 8:30 to 17:00 h
local time every day. The image covered an area of approximately
30 m2. The raw images were transmitted via wireless networks and
automatically stored in a personal computer. The filenames included
a date and time stamp for subsequent processing.

In this study, we collected 2238 images in 2011 and 1981 images
in 2012. On average, 17 images were collected per day; however,
unavoidable network connectivity problems resulted in occasional
gaps in the webcam data recordings. The data for 19 days (12%) and
21 days (13%)weremissing in 2011 and 2012, respectively. The longest
gap without a picture was 7 days in 2011 and 15 days in 2012.

The image quality was occasionally adversely affected by variable
light conditions or by condensation on the window housing the
camera. However, no selective editing or artificial enhancement of
any of the archived images was performed before the image analysis.
This procedure allowed us to compare the results with those obtained
from different sites or reported by other studies.

The image data were processed using a program written in Matlab
(R2009a; The Math Works, Natick, Mass., USA). The camera images
were successively loaded, and the date and time were extracted from
the filename. First, a subset of each image was selected as a region
of interest (ROI) because each population is known to show spatial
heterogeneity. The winter wheat showed homogeneous growth within
the coverage represented by a single photo. Accordingly, the entire
image was selected as an ROI. Second, color channel information
(digital numbers: DNs) was extracted from the images and averaged
across the ROIs for each of the 3 color channels (red DNs, green DNs,
and blue DNs). Furthermore, the camera-based greenness indices
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Table 1
The life cycle of winter wheat.

Crop The life cycle

Winter wheat Seeding time Time of emergence Trefoil stage Tillering stage Green returned stage Jointing stage Heading stage Dough stage Harvest time
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(G%, G/R) for each photograph were calculated using the following
equations (Adamsen et al., 1999; Ahrends et al., 2008):

G% ¼ Green DN
Red DNþ Greeen DNþ Blue DN

ð1Þ

G=R ¼ Green DN=Red DN; ð2Þ

where G% and G/R are the greenness indices for the ROI of each photo-
graph and Red DN, Green DN, and Blue DN are the DN values of the
blue, green, and red channels.

2.3. Eddy covariance flux measurement and micrometeorological data

An eddy covariance (EC) system and a microclimate gradient
measurement system were placed in the center of a large crop
field. The EC system consists of a 3-dimensional sonic anemometer
and an open-path infrared CO2/H2O analyzer (IRGA. Li-7500; Li-Cor
Inc., Lincoln, Nebraska, USA) at a height of 2.80 m; this system
measures the fluctuations in wind velocity, temperature, water
vapor, and CO2 concentration. All the data were collected continu-
ously at 10 Hz with a Campbell Scientific data logger (model CR5000;
Campbell Sci. Inc., Utah, USA), and the 30-min mean data were output
(Qin et al., 2005).

The microclimate gradient measurement system includes ane-
mometers (model AR-100; Vector Instruments, UK) and psychrome-
ters (model HPM-45C; Vaisala, Finland) placed at average heights
of 2.20 and 3.40 m, respectively. Photosynthetically active radiation
was measured using a quantum sensor (Li-190SB; Li-Cor Inc., USA).
For a complete description of the arrangement of these instruments,
see Li et al. (2006).

2.4. Thresholds for detecting key phenological stages

Key phenological stages are periods in which canopy greenness
changes markedly and farmland management has a significant effect
on farm crop yield. In this study, the key phenological stages for win-
ter wheat were the greenup stage, the jointing stage, and the harvest
time. (1) During the greenup stage, winter wheat begins to green up
from winter dormancy, and green leaves rapidly appear. Therefore,
the smoothed time profile of the greenness index was assumed to
increase rapidly during this stage. The date of the most rapid increase
in the greenness index in the time profile was used as the estimate of
the onset of the greenup stage. (2) The jointing stage is the stage at
which the internodal tissue in the winter wheat leaf begins to elon-
gate and forms a stem. In this phase, the growth phase of the winter
wheat changes from vegetative to reproductive. This stage represents
a plateau with a high value of the greenness index. Therefore, we de-
fined the date on which the curvature of the greenness index reaches
its second maximum as the estimated onset of the jointing stage.
(3) The harvest time is the date on which the wheat is reaped. The
greenness index gradually decreases as the leaves wither and die.
An abrupt decrease in the greenness index follows due to harvesting.
Therefore, the date corresponding to the inflection point at which the
curvature reaches its last maximum was defined as the estimated
harvesting date.

First, the double logistic function was used to fit the time series of
the greenness index because this function can express the growth pro-
cess continuously, as shown in Eq. (3). The curvature (ρ) of the fitted
time series for the greenness index was then calculated (Eq. (4)) as
follows:

g tð Þ ¼ aþ b
1þ exp c−dtð Þ½ � 1þ exp e−ftð Þ½ � ð3Þ

ρ ¼ g tð Þ}
1þ g tð Þ02� �3

2

�����

�����; ð4Þ

where g(t) is the fitted greenness index, t is the driving variable (day
of year, DOY), and a through f are parameters of the fitted function.
Parameters a and b are the base levels (e.g., the dormant season
value) of g(t) and the seasonal amplitude of g(t), respectively. Parame-
ters c and d control the phase and slope for the greenup stage, and pa-
rameters e and f control the timing and rate of decrease associated
with senescence. g(t)′ = dg(t)/d(t) denotes the first derivative of g(t)
with respect to t; g(t)″ = d2g(t)/d(t)2 denotes the second derivative
of g(t) with respect to t.

2.5. LUE model

The LUE model was proposed by Monteith (Monteith, 1972) and
has been extensively used to estimate GPP at various temporal and
spatial scales (Sims et al., 2005; Turner et al., 2003). This model
assumes that carbon fixation is linearly related to LUE and to the
amount of photosynthetic radiation absorbed (APAR), which is the
product of photosynthetically active radiation (PAR) and the fraction
of PAR absorbed (FPAR; Heinsch et al., 2003). The APAR in the LUE
model can be estimated from daily meteorology (Veroustraete et al.,
2002) or can be obtained through the use of a vegetation index related
to photosynthetic efficiency (Gamon et al., 1997). In this study, GI
(Greenness Index) was used as a proxy of FPAR.

GPPi ¼ εmax � α þ β � GIið Þ � PAR � f VPDð Þ � f Tminð Þ; ð5Þ

where εmax is the maximum light use efficiency (gCMJ−1), with an as-
sumed value of 3.47 gCMJ−1 (Yan et al., 2009); f(Tmin) and f(VPD) are
linear threshold functions that range between 0 and 1 and that ex-
press the effects of suboptimal temperatures and water availability
for photosynthesis, respectively; PAR is the incident PAR (MJm−2);
and parameters α and βwere estimated from the observed daily GPP.

The function f(Tmin) used to describe the influence of Tmin is de-
fined as follows:

f Tminð Þ ¼

0 if Tmin ≤ Tmmin

Tmin−Tmmin

Tmmax−Tmin
if Tmmax > Tmin > Tmmin

1 if Tmin ≥ Tmmax

8>>><
>>>:

ð6Þ

where Tmin is the observed daily minimum temperature and Tmmax

and Tmmin indicate the thresholds between which the constraint
varies linearly.

The daily indicator function f(VPD) for water availability has a
value of 1 if the daily VPD is lower than the minimum threshold
(VPDmin) and a value of 0 if the daily VPD is greater than the maxi-
mum threshold (VPDmax), above which VPD forces stomatal closure.
In this study, the values of Tmmin, Tmmax, VPDmin, and VPDmax were
set according to the MODIS GPP algorithm (Heinsch et al., 2003).
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The best-fit model parameters were estimated in Matlab using the
Levenberg–Marquardtmethod. Theoverall accuracy of thefittedmodels
was evaluated in terms of the fitting statistics (R2, RMSE) calculated for
the observed and modeled data (Janssen and Heuberger, 1995).

3. Results

3.1. Qualitative patterns

A substantial number of images were collected during the 2011 and
2012 winter wheat growing seasons. Distinct changes in the wheat
canopy can be observed by comparing the images obtained at different
times. For example, the seasonal change during the growing season in
2011 is shown in Fig. 1. During the winter and early spring, no green
leaves emerged, and the images primarily showed the color of the
soil. Thus, it could be inferred that the winter wheat was in a dormant
stage. The onset of the greenup stage was marked by a change in
image coloration. Although yellow was the principal color, green bands
began to appear as the leaves emerged; this pattern was clearly visible
by day 66 (Fig. 1A). This finding suggested that the winter wheat was
in the greenup stage. The images obtained on day 105 (Fig. 1B) showed
that the green color had replaced the yellow color. The green coloration
continued to increasewith the development of the canopy and reached a
peak on day 130 (Fig. 1C). Yellow then became increasingly evident and
became the principal color on day 163 (Fig. 1D).

3.2. Quantitative patterns

The following analysis yielded a quantitative description of the
canopy. First, the daily greenness indices were calculated using the
functions specified by Eqs. (1) and (2). The color channels (R, G, B),
brightness index, and greenness index showed substantial diurnal
variation, and these patterns of diurnal variation were nearly sym-
metrical (Fig. 2). The daily minimum values for the greenness indices
between 10:00 and 15:00 h local time were adopted as the daily
greenness index because the minimum value was observed close to
noon, when the solar elevation angle is a minimum. The time series
for the color channels (R, G, B) did not show any obvious seasonal
trends (Fig. 3A,B), suggesting that the greenness value alone fails to
capture the development of the canopy.
Fig. 1. Sample webcam images of winter wheat. (A) day 66, (B) day 10
The canopy status can be accurately described through the use
of the greenness index that can best predict canopy development.
The correlations between the ancillary data and the greenness indices
are shown in Table 2. There was a positive correlation between cover
estimation and GPP. The correlation of G/R with the ancillary data was
slightly stronger than that of G%. Therefore, the results are further
discussed only in terms of G/R.

In 2011, G/R (Fig. 3C) began increasing gradually after DOY 60
in conjunction with an increase in temperature and reached its max-
imum at approximately DOY 110. Over the following weeks (at or
near DOY 150), G/R showed a marked decline due to the maturation
of the winter wheat. This seasonal variation is in accordance with
the development of winter wheat. However, a slight decline in G/R
was observed before DOY 60 in 2011 (Fig. 3C). This result indicates
that the increase in soil moisture caused G/R to decrease. Most likely,
this decrease resulted from the increase in soil moisture because the
reflectance of G decreased more markedly than that of R, resulting
in decreasing brightness values. In 2012, G/R (Fig. 3D) began to in-
crease gradually after DOY 70 with increasing temperatures and
then showed the same trend as in 2011, i.e., reached its minimum
value on approximately DOY 160.

The G/R time series for the growing season (1 March to 19 June)
was fitted using the curve shown in Eq. (3) (R2 = 0.90), and the max-
imum linear curvature was calculated as shown in Eq. (4). Based on
this analysis, the onset dates of the 3 key phenological stages were
DOY 66, 105, and 160. The same method was used to obtain the key
phenological stages in 2012, as shown in Table 3. The interannual
variance of the stages in which greenness reappeared was found to
be large. The date at which greenness returned was affected by the
temperature, soil moisture, radiation, and sowing dates. The mean
difference between the greenness-based phenological dates and the
field data was 3.3 days in 2011 and 4 days in 2012. These results
further confirmed that the G/R index can be used to obtain relatively
accurate phenological stages during winter wheat development.

3.3. Performance of the LUE model

Three LUE models based on different variables were used to model
the daily variation in GPP for 2011. The 3 models differed in terms
of the impact of different environmental factors on FPAR. Model 1
5, (C) day 130, (D) day 163 in 2011. ROI is the region of interest.

image of Fig.�1


Fig. 2. Diurnal pattern of RGB brightness levels. G/R and G% for winter wheat at different times of the year.
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assumed that temperature and VPD jointly affected FPAR, model 2 as-
sumed that only temperature affected FPAR, and model 3 did not in-
clude the limited effects of environmental factors on FPAR. To identify
the best model, we computed the parameters for the 3 LUE models
based on the 2011 data. To compare the 3 GPP models (GPPmod)
with the GPP measurements (GPPobs) for 2011, we then computed
the correlation coefficients between the model values and the mea-
sured values, as well as the associated RMSE (Table 4). The strong
correlations found between the GPPmod values and GPPobs showed
that color indices (i.e., GI) can be used effectively in combination
with meteorological data to describe GPP (Table 4). The comparison
of these correlations (Table 4) shows that model 1 is clearly superior
to the other 2 models, particularly in view of the strong agreement
between model 1 and the measurements (Fig. 4).
Fig. 3. Time series of brightness numbers (A, B), rat
To verify the feasibility of different LUE models, we modeled the
GPP for the growing season in 2012 based on site-specific data
(temperature, VPD, PAR, and greenness indices). The values of param-
eters α and β for all 3 models are shown in Table 4. The seasonal
dynamics of the GPP (GPPmod) predicted by the LUE model was con-
sistent with the observed GPP (GPPobs) values, as shown in a Taylor
diagram (Fig. 5). In this diagram, the effectiveness of the 3 models
considered in this study is represented by the distance between
point A and points B, C, and D. A shorter distance between points
indicates a more accurate model. For the 2012 growing season, the
diagram clearly shows that point B (model 1) is closest to point A.
A simple linear regression model also showed good agreement be-
tween point A (GPPobs) and point B (GPP obtained from model 1)
for the 2012 growing season (Fig. 6, upper right panel). Furthermore,
io greenness index (C, D). x axis is day of year.

image of Fig.�3
image of Fig.�2


Table 2
Linear correlation coefficient calculated between ancillary data and greenness indices.
GPP was daily averaged from 1 March to 31 May in2011.

Cover estimation GPP

G/R 0.957a 0.76a

G% 0.891a 0.74a

Cover estimation is percentage of green leaf area in picture, calculated by the software
“SAMPLEPOINT” (Booth et al., 2006).

a Represents significant correlation (P b 0.001).

Table 4
Summary of statistics for identifying the best fit (determination coefficient; r2, root
mean square error, RMSE) of different models, the formula of model 1 is equal to
Eq. (5); the formula of model 2 is equal to Eq. (5) remove f(VPD); and the formula of
model 3 is equal to Eq. (5) remove f(VPD) and f(T).

VPD T PAR GI R2 RMSE α β

model 1 √ √ √ √ 0.86 2.5 −0.05748 0.077457
model 2 √ √ √ 0.85 2.7 −0.05770 0.075963
model 3 √ √ 0.77 3.2 −0.04255 0.054904
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point C (model 2) is also close to point B. These comparisons confirm
that model 1 is the most reasonable of the 3 models evaluated.

The GPPobs data tended to show an initial increase with a subse-
quent decrease; the same trend was evident in the GPPmod data
(Fig. 6). Furthermore, we calculated the site-scale GPP using the
Vegetation Photosynthesis Model (VPM), which has been used at
the Yucheng site (a detailed description of the VPM model and its pa-
rameters is given in Yan et al., 2009). The results of this calculation
showed that the GPP values calculated from LUE model 1 and from
the VPM model differed significantly, especially considering the reso-
lution of the data (Fig. 6). The GPP values calculated from the LUE
model were represented on a daily scale, whereas the GPP values
calculated from the VPM model were represented on an 8-day scale;
hence, only 14 values were available from the VPM model for the pe-
riod from 1 March through 10 June. A statistical analysis showed that
the GPP values derived from the LUE model were closer to the GPPobs
values than those derived from the VPM model (Table 5, Fig. 6).

4. Discussion

4.1. Effectiveness of digital camera tracking of canopy phenology

Our results suggested that digital camera imagery was well suited
for monitoring the development and phenological stages of winter
wheat, as reported by many previous studies (Adamsen et al., 1999;
Jensen et al., 2007; Lukina et al., 1999). The indices (G/R) derived
from the imagery analysis provided reliable information on the
daily canopy state. Additionally, they facilitated the continuous and
unattendedmonitoring of the timing and rate of canopy development
(Migliavacca et al., 2011), demonstrating the importance of digital
camera imagery for canopy tracking.

In general, determining the phenological stages of a canopy using
“near-surface” remote sensing is difficult because of the high hetero-
geneity of the canopy. However, the phenological stages obtained
using a digital camera in this study were similar to those observed
directly (Table 3); this similarity in the results can be explained in
2 ways. First, the study area was located on the alluvial plain of the
Yellow River. The terrain of this area is flat, and hydrothermal condi-
tions are consistent throughout the area, resulting in a relatively uni-
form agro-ecosystem canopy. Second, the digital camera used in this
study provided appropriate technical support. The 3 bands of the digital
camera (the red, green, and blue channels) had peak sensitivities
at wavelengths of 620, 540, and 470 nm, which corresponded to the
absorptive/reflective/absorptive bands of the vegetation. The relative
Table 3
Phenological dates (day of year) derived from digital camera images (Cam) and dates
from field observations (Obs).

Greenup stage (DOY) Jointing stage (DOY) Harvest time (DOY)

Cam Obs Diff Cam Obs Diff Cam Obs Diff

2011 66 62 4 105 102 3 160 163 3
2012 80 73a 7 104 99 5 159 159 0

a the date was missed and determined by first day of 5-day consecutive mean tem-
perature beyond 3 °C.
values of reflectance at these wavelengths are normally R540 > R620

and R540 > R470 (Serrano et al., 2000). Soil-forming minerals, water
content, organic matter, and texture are known to affect the spectral
features of soil in a highly complexmanner. The relative values of reflec-
tance found by our study were R620 > R540 > R470 on the soil surface
(Stoner and Baumgardner, 1981). Hence, the G/R was calculated on
the basis of this difference, which describes the absorptive/reflective
characteristics of the different bands between the vegetation canopy
and the soil surface. Apparently, the gap between the vegetation and
the soil was emphasized by the transformation of the banding pattern,
providing an effective source of vegetation information.

The use of a digital camera to monitor vegetation phenology has as
its primary focus the real-time monitoring of canopy development,
namely, the phenological phase (Mirjana and Vulić, 2005), including
the various stages of canopy development, such as the jointing stage.
G/R was found to be an effective index to track the trajectory of the
growing season, as previously reported (Adamsen et al., 1999). The
seasonal variations in G/R were, most likely, caused by 2 types of phe-
nological parameters, namely, the leaf area and the physiological
pigments (Saitoh et al., 2012). During the growth of winter wheat,
the leaf area increases rapidly after winter recovery, reaches a maxi-
mum at or near the heading stage (at approximately the end of April
in the study area), and then declines gradually as the lower leaves
begin to die (Chen et al., 2010). The content of physiological pigments
is known to change regularly. These seasonal variations (leaf area and
physiological pigments) translate into clear dynamic changes in pho-
tosynthetic capacity (Muraoka and Koizumi, 2005). For this reason,
the daily NEE and PAR data were collected using the eddy covariance
technique, and the Michaelis–Menten equation was used (Hollinger
et al., 2004) to obtain a curve for the theoretical light-saturated rate
of canopy photosynthesis (Amax). A positive relationship was found
between G/R and Amax (Fig. 7), suggesting that G/R could reflect the
phenological activity of the plants at the physiological level.
Fig. 4. Seasonal variation in daily GPP values calculated using model 1 and field mea-
sured. The hollow circle indicates the modeled values, and the line indicates the field
measured values.
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Fig. 5. Pattern statics between field-measured GPP and GPP measured using different
models. Letter A stands for filed-observed GPP; letters B, C, and D indicate modeled
GPP derived from models 1, 2, and 3, respectively.

Table 5
Summary of statistical variables for GPPobs and GPPmod on the basis of 13 sample
data (except the data on 17 May because the LUE model does not include results for
this date).

Statistical variables Obs GPP LUE model VPM model

Mean 9.05 6.98 6.23
Standard error 2.12 1.85 1.30
Standard deviation 7.66 6.67 4.70
Minimum 0.90 0.64 0.36
Maximum 20.66 19.27 14.31
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4.2. The usefulness of greenness indices for improving GPP modeling

The daily GPP could be estimated with the LUE model based on a
combination of the greenness indices and the meteorological data
(Table 4, Fig. 6). In 2011, the modeled GPP values were very similar to
the observed GPP values resulting from the incorporation of different
numbers of constraint factors, as shown by the comparison among the
3 types of LUE models (Table 4). Because model 3 was derived only on
the basis of radiation and G/R, the results derived from this model
were closer to the potential photosynthetic activity than were those
derived using the other models, and the relationship (R2) with the
observed GPP was relatively weak. If a temperature constraint was
included (model 2), the relationship (R2) with the observed GPP im-
proved substantially. However, the inclusion of the VPD constraint
(model 1) improved the relationship (R2) with the observed GPP only
slightly. This result indicated that temperature had a profound influence
Fig. 6. The comparison between filed-observed GPP and modeled GPP in 2012. The
upper right corner is the fitted line between LUE model-based GPP and observed
GPP. The data between 10 May and 24 May could not be collected for the LUE model.
Hollow circles indicate field-observed daily GPP values, and solid circles indicate
LUE model-based GPP values (model 1), upper triangles indicate VPM model-based
GPP value. The VPM model was run using site-specific data on temperature, PAR, and
vegetation indices in 2012.
on the daily GPP (Table 4). Generally, the principal environmental fac-
tors for plant species are temperature, day length, andwater availability
(Soudani et al., 2012). The content (including the naturally occurring
nutrient content) of the soil does not represent an important constraint
for plants grown under human management (e.g., due to the use of
irrigation and/or fertilizer). Therefore, temperature is an important
environmental factor at this well-managed cropland site; it is the only
important environmental factor that controls daily GPP (Chen and Xu,
2012; Chmielewski and Rotzer, 2002).

For 2012, a high correlation was found between the measured
data and the simulated data from the 3 models, indicating that
the parameters derived from the 2011 data were highly suitable for
describing the GPP variation in 2012 (Fig. 5). Although all 3 models
showed high correlations, model 1 yielded a more accurate determi-
nation of the GPP values for winter wheat in 2012. The simulation re-
sults obtained with this model are highly accurate and are superior to
those obtained from a simulation using the VPM model and 8-day
MODIS data (Yan et al., 2009). The VPM model is based on remote
sensing data and was developed to estimate the GPP of terrestrial
ecosystems (Xiao et al., 2004); this model has been successfully
used to estimate GPP in various ecosystems, including forest, grass-
land (Li et al., 2007), and managed cropland (Yan et al., 2009). In
this study, the GPP values based on the LUE model agreed more
closely at the ecosystem scale with the observed values than did the
GPP values based on the VPM model. The principal reason for this
difference could be that the greenness indices derived from digital
imagery not only have higher spatial and temporal resolution and
are less affected by environmental conditions than MODIS data
(Richardson et al., 2007; Studer et al., 2007) but also reflect the photo-
synthetic capacity of the canopy (Graham et al., 2006; Liu and Pattey,
2010; Pekin andMacfarlane, 2009). Additionally, the effects of a water
deficit were represented by VPD in the LUEmodel, whereas they were
represented by the land surface water index (LSWI) derived from
MODIS reflectance in the VPM model. Although the LSWI is sensitive
to the total amount of liquid water in the crop (Chandrasekar et al.,
2010), it is easily affected by exogenous factors.

The greenness indices were found to be extremely valuable for de-
veloping and testing the LUEmodel for monitoring daily GPP. This ap-
proach might be useful for developing a new method to interpolate
the GPP data regardless of data loss and might furnish a method for
estimating the temporal and spatial distributions of photosynthetic
productivity (Saitoh et al., 2012).

4.3. Uncertainty and limitations

Previous studies have suggested the use of digital imagery for
monitoring seasonal variations in the structure of the plant canopy
(Crimmins and Crimmins, 2008; Kawashima and Nakatani, 1998; Liu
and Pattey, 2010; Richardson et al., 2007; Sakamoto et al., 2011).
In this study, we highlighted the potential use of digital imagery for
the development and parameterization of LUE models for winter
wheat. Nevertheless, this method, incorporating RGB color imagery
data to obtain vegetation status, is not perfect due to several limita-
tions and uncertainties. These limitations need to be addressed to
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Fig. 7. Seasonal variation of greenness indices (G/R) and Amax (inferred from eddy covariance measurements of surface-atmosphere CO2 exchange). Hollow circles indicate green-
ness index; triangles indicate Amax. Lines are best-fit interval smoothing splines (smoothing parameter = 11).
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improve the reliability of the time series monitoring of vegetation sta-
tus (Bradley et al., 2010; Ide and Oguma, 2010) and the accuracy of
modeling daily GPP.

Digital camera imagery has 3 principal limitations. First, the qual-
ity of digital camera images can vary. Sonnentag et al. (2011) have in-
dicated that different commercial digital cameras installed to observe
the same ecosystem provide different information. Moreover, Ide
and Oguma (2010) have noted a year-to-year drift in color balance
and suggested that the color balance varies among cameras produced
by different manufacturers. Even if the white balance is fixed in a
camera, the inevitable noise due to exposure and weather conditions
results in varied greenness indices. Therefore, calibration protocols and
standards need to be developed to ensure uniformity in long-term
datasets from multiple sites (Ide and Oguma, 2010; Migliavacca et al.,
2011).

The second limitation involves the processing of greenness indi-
ces. First, different researchers use unique methods to obtain relative-
ly accurate status information about the daily vegetation canopy. For
example, Richardson et al. (2009) used mid-day images from 1 cam-
era to calculate the greenness index, Kurc and Benton (2010) used the
solar noon images from 3 identical cameras to calculate the average
greenness index, and Sonnentag et al. (2011) used the daily mean
values from images obtained between 8:00 and 11:00 h local time
to calculate the greenness index. In this study, the digital images
were obtained every half hour from 8:30 to 17:00 h. The greenness
indices are known to change periodically due to seasonal changes in
incident light angle and intensity (Fig. 2). Although the minimum-
value composite that minimizes the viewing geometries of the canopy
between 10:00 and 15:00 h was used in our study to determine the
variations in the greenness index data, other approaches need to
be explored to determine the best greenness measurement method.
Second, outliers produced by unfavorable meteorological conditions
must be excluded from the data used to obtain a time series of green-
ness indices. Different filtering methods can be used to overcome
this problem; however, they might introduce new uncertainties.
Moreover, in the process of retrieving phenological metrics from the
time series of greenness indices, different methods may yield quite
different results (White et al., 2009), although we adopted a relatively
stable and robust processing method (the double logistic model; Zhu
et al., 2012).

The third limitation affecting the modeling of daily GPP is that the
parameter values, such as VPDmin, VPDmax, Tmmin, and Tmmax, are equal
to the values obtained using MODIS data to calculate the daily gross
primary productivity mentioned in the User's Guide for GPP and NPP
(MOD17A2/A3) Products. In the future, the accuracy of modeled
data can be increased by introducing mechanistic experiments.

These limitations should be addressed to improve the time series
monitoring of long-term phenological data through the use of digital
camera imagery and to identify a feasible method of interpolating
high temporal-resolution GPP data. In the future, these advances
might facilitate the analysis of the interannual and spatial variability
of GPP.

5. Summary

This study showed that high-resolution digital camera images
provide reliable information on canopy status. An automated analysis
of phenological events was performed by determining the curvature
shape of the greenness index to obtain relatively accurate phenologi-
cal stages. Digital camera imagery expands the scope of phenological
observation methods for use in the field and might furnish an effec-
tive method of validating remote sensing phenology.

The LUE model developed in this study, which combined informa-
tion derived from color indices and meteorological data, represents a
successful model of daily GPP and might facilitate the monitoring of
spatial and temporal variations in carbon uptake.

In conclusion, digital camera imagery can not only provide impor-
tant information at the site level to improve the understanding of the
temporal processes of vegetation canopy dynamics; it can also repre-
sent a promising tool for validating different phenological models and
hypotheses. However, many limitations still affect image processing,
and further efforts are required to address these limitations and es-
tablish an optimum method for quantitatively monitoring seasonal
crop growth.
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