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The assessment of forest biomass is required for the estimation of carbon sinks and a
myriad other ecological and environmental factors. In this article, we combined satel-
lite data (Thematic Mapper (TM) and Moderate Resolution Imaging Spectrometer
(MODIS)), forest inventory data, and meteorological data to estimate forest biomass
across the North–South Transect of Eastern China (NSTEC). We estimate that the
total regional forest biomass was 2.306 × 109 Megagrams (Mg) in 2007, with a mean
coniferous forest biomass density of 132.78 Mg ha−1 and a mean broadleaved forest
biomass density of 142.32 Mg ha−1. The mean biomass density of the entire NSTEC
was 129 Mg ha−1. Furthermore, we analysed the spatial distribution pattern of the forest
biomass and the distribution of biomass along the latitudinal and longitudinal gradients.
The biomass was higher in the south and east and lower in the north and west of the tran-
sect. In the northern part of the NSTEC, the forest biomass was positively correlated
with longitude. However, in the southern part of the transect, the forest biomass was
negatively correlated with latitude but positively correlated with longitude. The biomass
had an increasing trend with increases in precipitation and temperature. The results of
the study can provide useful information for future studies, including quantifying the
regional carbon budget.

1. Introduction

As the principal component of the terrestrial ecosystem, the forest ecosystem represents
one of the major carbon pools. As climate change accelerates, the strong carbon sink
capacity of forest ecosystems increasingly attracts the interest of international commu-
nities. Except for some small areas that have been carefully studied, estimates of carbon
sink capacity are subject to a high degree of uncertainty. One useful way to proceed is
to estimate biomass changes in land cover (Lu 2006). A number of studies have pro-
vided useful approaches for estimating forest biomass, and remote-sensing technology has
become the most effective method due to its convenience of data acquisition, its synoptic
view over large areas, and its greatly increased efficiency and usefulness in comparison
with the limited conventional methods. Numerous studies have estimated forest biomass
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at different scales using remote-sensing data (Roy and Ravan 1996; Barbosa et al. 1999;
Nelson et al. 2000; Wylie et al. 2002; Dong et al. 2003; Foody 2003; Thenkabail 2004;
Zheng et al. 2004; Lu 2005; Muukkonen and Heiskanen 2007). Because fine-spatial reso-
lution remote-sensing data (IKONOS, QuickBird) match well with ground measurements
in terms of spatial resolution, these can be combined to establish a biomass estimate
model. Coarse spatial-resolution remote-sensing data (Advanced Very High Resolution
Radiometer (AVHRR), Système Pour l’Observation de la Terre (SPOT) VEGETATION,
Moderate Resolution Imaging Spectrometer (MODIS)) have been useful in regional-
or even global-scale forest biomass estimation due to their wide image coverage and
frequency of data acquisition (Muukkonen and Heiskanen 2007). Medium-resolution
satellite data (TM, Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER)) can be used as an intermediate step in linking plot-level field measurements
with coarse-resolution remote-sensing data (Tomppo et al. 2002).

In this study, a large body of forest biomass inventory data and 30 m resolution TM
data were combined to build forest biomass estimation models. By means of spectral cali-
bration between TM and MODIS sensors, the models were utilized to estimate the regional
forest biomass of the North–South Transect of Eastern China (NSTEC) with MODIS data.
We analysed the relationship between forest biomass and vegetation indices, geo-factors,
and meteorological factors, and we demonstrate the spatial distribution pattern of forest
biomass within the context of the NSTEC.

2. Materials and methods

We modelled the NSTEC biomass using remote sensing and forest investigation data using
two sets of remote-sensing data, one with a smaller pixel size (TM, 30 m) and the other
with a larger pixel size (MODIS, 250 m) for model parameterization and application at
the regional scale. Detailed steps included the following: (1) developing the forest biomass
model within a limited portion of the region using TM and forest inventory data; (2) con-
ducting internal spectral calibrations between TM and MODIS data due to differences in
spatial and spectral resolutions between the two sensors such that the TM-based model can
be applied to the entire region of NSTEC using MODIS data; and (3) validating the model
and analysing the distribution of forest biomass in the NSTEC.

2.1. Study area

The NSTEC is a concentrated forest distribution area in China and spans a wide range
of environmental conditions including temperature, precipitation, and topography. The
NSTEC extends from Hainan Island to the northern border of China, ranging between
longitudes 108–118◦ E for latitudes below 40◦ N and longitudes 118–128◦ E for lati-
tudes equal to or greater than 40◦ N, and covers about 1/3 of the territory of China
(Figure 1). The northern part extends from the north of the Da Hinggan Mountains east-
ward to Changbaishan through Xiao Hinggan Mountains (118◦ E, 55◦ N to 128◦ E, 40◦ N).
The southern part extends from the North China Plain through the Yangtze–Huai Plain, the
Chiang-nan Hilly Region, and the Nanling Mountains to Hainan Island (108◦ E, 40◦ N
to 118◦ E, 17.5◦ N). The straight-line distance from south to north is over 3500 km.
There are large heat and water-heat group gradients in the NSTEC (Peng et al. 2002). The
annual mean temperature in the transect ranges from 24◦C in Hainan Province to 0–4◦C
in Heilongjiang Province, and annual precipitation values range accordingly. The Yangtze
River can be regarded as the natural rainfall isoline of 1000 mm; to the south, rainfall
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Figure 1. Geographic range of the North–South Transect of Eastern China (NSTEC) and its land-
cover types.

increases gradually to 1600 mm in Fujian, Hunan, Jiangxi, and Hubei provinces, and to the
north it decreases to 600 mm in Northeast China (Zhou and Zhang 2008). The main types
of vegetation from south to north range from tropical evergreen forest, mixed tropical ever-
green and deciduous forest, subtropical evergreen forest, mixed subtropical evergreen and
deciduous forest, subtropical coniferous, warm deciduous broadleaved forest, warm nee-
dle, mixed warm broadleaved, and coniferous forest, subalpine deciduous coniferous and
warm alpine evergreen coniferous, to alpine coniferous (Wu 1980).

2.2. Data and processing

The field biomass data were derived from the dissertation of Luo (Luo 1996), which
includes forest biomass data from the 1980s and 1990s throughout China. This data
set includes biomass, net primary productivity (NPP), leaf area index (LAI), and atmo-
spheric data from 1266 plots. To match the time of the field biomass data, TM images
dating from July to September in the 1980s/1990s and derived from the Global Land
Survey (GLS) 1990 data set were acquired to build the biomass model. Furthermore, the
2006–2007 Landsat TM data and MODIS 250 m data (MOD09Q1) dating from July to
September were collected to conduct spectral calibrations between them. The study area
is covered by 200 scenes of TM images, and by 13 scenes of MODIS images. To mini-
mize cloud contamination and atmospheric effects, we collected TM imagery with as little
cloud cover as possible. Atmospheric correction of Landsat data was performed using the
FLAASH module of ENVI software which is manufactured by ITT Visual Information
Solutions (ITT VIS, Boulder, CO, USA), and geometric rectification and mosaicking were
performed.
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NASA provides a range of MODIS products pre-processed with standard correction
algorithms. MODIS 09 daily data were corrected for the effects of gaseous and aerosol
scattering and absorption, as well as for adjacency effects caused by variation in land
cover, bidirectional reflectance distribution function (BRDF) and atmosphere coupling
effects, and contamination by thin cirrus (Vermote and Vermeulen 1999). In particular,
each MOD09Q1 data granule (MODIS/Terra Surface Reflectance 8 Day L3 Global 250 m
SIN Grid) offers a composite of the previous eight daily surface reflectance products
with the best observations for each pixel in the two MODIS bands at 250 m (red and
near-infrared). The goal is to obtain single cloud-free images with minimal atmospheric
and sun surface–sensor angular effects representative of the 8 day period (Rossi et al.
2010). MOD09Q1 images dating from July to September have been collected for the years
2006–2007 and re-projected using the MODIS Reprojection Tool (MRT). All data were
projected to the Albers Conical Equal Area.

The other spatial data applied in this article include 1 km resolution digital elevation
models (DEMs) from the National Fundamental Geographic Information System (NFGIS)
and a 1:1,000,000 vegetation map of China derived from the Vegetation Atlas of China
(Hou 2001). Another important data source was the 2001–2007 average precipitation
and temperature data from 752 atmospheric observation sites, which were interpolated
to individual 1 km pixels using ANUSPLINE (Hutchinson 2001). Average precipitation
and temperature data were interpolated using thin-plate smoothing splines based on the
topography of the transect.

2.3. Model development

Two hundred scenes of TM images in the 1980s/1990s for the study area were acquired to
calculate various vegetation indices, which were used to assess the status of and monitor
the evolution of the terrestrial biosphere. These vegetation indices have varying sensitivity
to atmospheric or soil conditions. In this article, we chose four indices (NDVI, RVI, SAVI,
and MSAVI) to perform multiple linear regression analysis, and those with good capability
to retrieve forest biomass from TM were determined based on the Statistical Program for
Social Sciences (SPSS). The relative data on surface reflectivity, which are manifested in
the image digital numbers (DN), were converted to an absolute form, reflectance, prior
to the calculation of vegetation indices (Foody, Boyd, and Cutler 2003). Four vegetation
indices were selected for the statistical modelling.

(1) Normalized difference vegetation index (NDVI): NDVI = ρNIR − ρR /ρNIR + ρR.
(2) Ratio vegetation index (RVI): RVI = ρNIR/ρR.
(3) Soil-adjusted vegetation index (SAVI) (Huete 1988): SAVI = (ρNIR − ρR /ρNIR + ρR + L)

(1 + L), where L is the soil brightness correction factor; L = 0.5 works well in most
situations and is the default value (Qi et al. 1994).

(4) Modified soil-adjusted vegetation index (MSAVI):

MSAVI =
[
(2ρNIR + 1) − √

(2ρNIR + 1)2 − 8 (ρNIR − ρR)
]

2
.

In the above equation, ρR and ρNIR are the bands reflectance of red (R) and near
infrared (NIR), respectively.
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Table 1. Statistical models used for biomass estimation.

Model Equation r

Modelove Y = 0.129 × vprecip – 0.029 × ualt + 3.418 × gtemp + 5.151 × (RVI) + 41.963 0.626
Modelcon Y = 0.088 × vprecip – 0.028 × ualt + 3.059 × gtemp + 3.272 × (RVI) + 68.543 0.572
Modelbro Y = 0.152 × vprecip – 0.039 × ualt + 3.304 × gtemp + 55.097 × (NDVI) + 36.541 0.722

Notes: Modelove is the overall forest biomass estimation model for all forests within the NSTEC; this model
did not distinguish forest types. Modelcon and Modelbro are biomass estimation models for coniferous forest
and broadleaved forest, respectively. Y represents biomass density (Mg ha−1), vprecip represents average annual
precipitation (mm), ualt represents altitude (m), and gtemp represents average annual temperature (◦C). RVI, ratio
vegetation index; NDVI, normalized difference vegetation index.

Biomass estimation models were established through multiple linear regression anal-
ysis (see Table 1). The optimal independent variables were determined through stepwise
regressions from four vegetation indices, reflectance in bands 3 and 4, average annual
precipitation, average annual temperature, and DEM. Stepwise linear regression is a semi-
automated process of building a model by successively adding or removing variables based
solely on the t-statistics of their estimated coefficients. Using all the field biomass data,
we built the overall forest biomass estimation model (Modelove) for all forests within
the NSTEC; this model did not distinguish among forest types. Therefore, we also built
two biomass estimation models, one for coniferous forest (Modelcon) and the other for
broadleaved forest (Modelbro), by splitting the field biomass into two groups.

2.4. Spectral calibrations between two sensors

The biomass estimation model driven by TM is limited when applied to biomass estima-
tions of large areas, because of economic constraints. To provide a readily available and
low-cost method for the biomass estimation of a large area, model transformation was
performed to apply TM-based models to the NSTEC with MODIS data.

The linear regression equations, expressed as Y = aX + b, were established to trans-
form the spectral reflectance of MODIS bands 1 and 2 into those of TM bands 3 and
4, respectively (Hame et al. 1997; Muukkonen and Heiskanen 2007). In this equation,
Y represents the spectral reflectance of TM and X represents the spectral reflectance of
MODIS. The constant parameters, a and b, were calculated based on Equations (1) and (2),
respectively:

a = σ (y)

σ (x)
, (1)

b = ȳ − ax̄. (2)

In Equations (1) and (2), ȳ and x̄ are the mean values of variables y and x, and σ (y) and
σ (x) are their standard deviations, respectively (Curran and Hay 1986).

The forest-cover map of the NSTEC was extracted from the 1:1,000,000 vegetation
map and used as a mask to calculate the mean value and standard deviation of reflectance
of each band. Thus, the constant parameters a and b could be calculated by Equations (1)
and (2). Therefore, the linear regression models were determined as follows:
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Table 2. Precision detection and statistics of the models.

Model ME MAE MRE (%) MARE (%) p

Modelove (75 samples) 45.549 78.613 2.2 35.3 0.875
Modelcon (35 samples) 47.088 68.164 10.5 48.8 0.706
Modelbro (40 samples) −18.916 42.579 −30.7 42.1 0.905

Notes: Modelove is the overall forest biomass estimation model for all forests within the NSTEC. Modelcon and
Modelbro are biomass estimation models for coniferous and broadleaved forest, respectively.

YTM3 = 0.188XMODIS1 + 0.018, (3)

YTM4 = 0.464XMODIS2 + 0.030. (4)

In Equations (3) and (4), YTM3 and YTM4 are the spectral reflectances of TM bands 3 and 4,
respectively, and XMODIS1 and XMODIS2 are the spectral reflectances of MODIS bands 1 and
2, respectively.

2.5. Model validation

An evaluation of the model’s performance and an assessment of the accuracy of the esti-
mated results are important aspects of the biomass estimation procedure. The randomly
reserved data were used for the model-independent test, which was not involved in the
statistical modelling; these accounted for 10% of the data (Mayer and Butler 1993). The
statistical indicators listed below indicated that there was a good fit between the developed
model and sample data (see Table 2).

(1) Mean error (ME): ME =
n∑

i=1

(
yi−ŷi

n

)
.

(2) Mean absolute error (MAE): MAE =
n∑

i=1

∣∣∣ yi−ŷi

n

∣∣∣.

(3) Average relative error (MRE): MRE = 1
n

n∑
i=1

(
yi−ŷi

yi

)
× 100%.

(4) Mean absolute relative error (MARE): MARE =
n∑

i=1

∣∣∣ yi−ŷi

yi

∣∣∣ × 100%.

(5) Precision of model estimation (p): p = (1 − t0.05sȳ

ˆ̄y ) × 100%.

In these equations, ˆ̄y is the mean value of the estimation and Sȳ is the standard error of the
regression.

3. Results and discussion

3.1. Distribution of forest biomass

The forest biomass within the NSTEC was estimated independently by an overall model
and two categorization models. As a result, three forest biomass distribution maps were
produced (see Figures 2(a)–(c)). Figure 2 shows that the forest biomass derived from the
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Figure 2. Spatial distribution of forest (all types) biomass estimated from stepwise regression
models (a) Modelove, (b) Modelcon, and (c) (Modelbro).

overall model ranges from 30 Megagrams (Mg) ha−1 to 308 Mg ha−1. Figures 3 and 4
indicate that the biomass of coniferous forest ranges from 34 Mg ha−1 to 240 Mg ha−1,
with a mean value of 132.78 Mg ha−1, while broadleaved forest ranges from 4 Mg ha−1

to 240 Mg ha−1, with a mean value of 142.32 Mg ha−1. The biomass distribution trends
of coniferous forest and broadleaved forest derived from the overall estimation model were
essentially the same as those derived from the categorization models, both of which were
higher in the south and east and lower in the north and west of the transect.

To reveal the spatial distribution pattern of the forest biomass within the context of the
NSTEC, the entire transect was divided into two parts, northern and southern, by 40◦ N
latitude. We divided the northern and southern parts into strips along the directions of
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Figure 3. Allocation of average biomass per unit forest area in strips along the direction of longitude
(a) and the direction latitude (b) in the northern part of the North–South Transect of Eastern China
(NSTEC).

longitude and latitude, respectively, both of which are 2.5◦ of latitude or longitude in width.
For each strip, we acquired the average biomass per unit forest area to analyse the spatial
distribution of forest biomass in the entire transect.

3.1.1. Distribution of forest biomass in the northern part of the NSTEC

The northern part of the NSTEC stretched from Heilongjiang Province to Liaoning
Province through Inner Mongolia and was dominated by sub-boreal and temperate alpine
coniferous forest, temperate deciduous broadleaved forest, temperate deciduous woodland,
and temperate coniferous forest. The forest consisted of several tree species including Larix
gmelinii, Quecus mongolica, Betula platyphylla, Ulmus, Populus, Quercus liaotungensis,
and Pinus tabulaeformis.

The northern part of the NSTEC was divided into five strips along the direction of
longitude, and into six strips along the direction of latitude. The average biomass per unit
forest area in strips along the direction of longitude showed forest biomass longitudinal
trends, while along the direction of latitude it showed latitudinal trends.
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Figure 4. Allocation of average biomass per unit forest area in strips along the direction of longitude
(a) and the direction of latitude (b) in the southern part of the North–South Transect of Eastern China
(NSTEC).

As shown in Figure 3(a), the average biomass per unit forest area in strips along the
direction of longitude ranged from 78 Mg ha−1 to 124 Mg ha−1, and forest biomass gener-
ally increased with increasing longitude. Biomass was relatively high between longitudes
125◦ E and 132.5◦ E because the Hinggan Mountains and Changbai Mountains are located
in this area, both having immense forested areas, high forest cover, and intact forest
ecosystems.

The average biomass per unit forest area in strips along the direction of latitude ranged
from 93.5 Mg ha−1 to 129.7 Mg ha−1, a trend showing relatively small fluctuation. The level
of 45◦ N was a turning point below which biomass decreased markedly from 129.7 Mg ha−1

to 93.5 Mg ha−1, above which it changed little, especially above 47.5◦ N (see Figure 3(b)).
Fluctuation in biomass is caused by the location of the Hinggan and Changbai Mountains.
The high biomass from 40◦ N to 45◦ N is mainly due to the Changbai Mountains, with high
forest cover and an intact forest ecosystem. The relatively high and steady-state biomass
between 47.5◦ N and 55◦ N is contributed to by the intact forest ecosystem of the Hinggan
Mountains.
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3.1.2. Distribution of forest biomass in the southern part of the NSTEC

The southern part of the NSTEC crosses a broad span of latitude (23–40◦ N). From
south to north, the forest types are subtropical coniferous forest, subtropical evergreen
and deciduous broadleaved mixed forest, subtropical bamboo forest, subtropical evergreen
broadleaved forest, temperate deciduous broadleaved forest, temperate coniferous forest
and sub-boreal, and temperate alpine coniferous forest.

The southern part of the NSTEC was divided into five strips along the direction of
longitude and nine strips along the direction of latitude. The average biomass per unit forest
area in strips along the direction of longitude showed forest biomass longitudinal trends,
while along the direction of latitude it showed latitudinal trends.

Figure 4(a) shows that the average biomass per unit forest area in strips along the
direction of longitude ranged from 140 Mg ha−1 to 191 Mg ha−1, and that forest biomass
generally increased with increasing longitude. The average biomass per unit forest area in
strips along the direction of latitude ranged from 60 Mg ha−1 to 210 Mg ha−1, showing
greater variation than that along the direction of longitude; the level of 30◦ N was a turning
point below which biomass changed little, and above which biomass decreased markedly
from approximately 190 Mg ha−1 to 60 Mg ha−1 (see Figure 4(b)). Temperature in the
various heat zones is one of the main factors resulting in this distribution biomass pattern.
However, high-intensity human disturbance and the development of secondary forest are
also important factors in bringing about a marked reduction in biomass in the area between
30◦ N and 40◦ N. Over the whole transect, high-intensity human disturbance in this area
has led to a huge discrepancy between biomass at latitudes 37.5–40.0◦ N and 40.0–42.5◦ N
(Figures 3(b) and 4(b)).

3.2. Gradient distribution of biomass in regard to climatic factors

The NSTEC is characterized by complex topography and environmental conditions.
Marked spatial variation in solar energy and available water and nutrients along the tran-
sect is the primary cause of the diverse distribution of terrestrial ecosystems and biomass.
To clarify the extent to which climatic factors determine biomass along the gradient of
climatic factors, we calculated the average biomass per unit forest area in relation to
precipitation and temperature levels.

The average annual precipitation within the NSTEC varies between 211 mm and
2536 mm. We split these values into gradients of 100 mm, resulting in 15 precipitation
levels, and the average biomass per unit forest area was calculated for each precipitation
level (see Figure 5). As shown in the graph, biomass exhibits an overall increasing trend
as precipitation increases, becoming more significant when precipitation exceeds 800 mm.
Because this level of precipitation is the dividing line between the humid and sub-humid
regions of China (Wu et al. 2005), we conclude that biomass is increased in the humid
regions of China.

A similar method was used to determine the extent to which temperature impacts on
biomass at each temperature level. The average annual temperature within the NSTEC
varied between –7◦C and 27◦C and was divided into 17 levels with a gradient of
2◦C, and the average biomass per unit forest area was calculated for each temperature
level. Figure 6 shows that 11◦C is a turning point below which biomass changes little,
remaining at approximately 100 Mg ha−1; above this point, biomass obviously increases.
However, at average annual temperatures above 21◦C, biomass does not vary with
temperature.
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Figure 5. Allocation of forest biomass across the precipitation gradient within the NSTEC.
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Figure 6. Allocation of forest biomass across the temperature gradient within the NSTEC.

According to the division of heat zones of China, an annual accumulated temperature
of 4500◦C represents the boundary between the warm temperate and subtropical zones.
Because 12◦C average annual temperature corresponds to 4500◦C accumulated tempera-
ture, we can conclude that biomass significantly increases at the transition area from warm
temperate to subtropical zones.

4. Conclusions

In this work, multiple linear regression models were developed to estimate the NSTEC
regional forest biomass using a large body of field biomass, remote-sensing data, meteoro-
logical data, and topographic data. The results of statistical tests indicate that the estimates
are reasonable and can truly reflect biomass distribution. Overall, forest biomass showed the
same longitudinal trends between the southern and northern parts of the NSTEC (i.e. that
biomass per unit forest area generally increases with increasing longitude). However, dif-
ferent latitudinal trends were found between the southern part of the NSTEC (dominated
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by broadleaf forests) and the northern part (dominated by coniferous forests). In the north-
ern part, the biomass per unit forest area showed relatively little fluctuation caused by the
location of the Hinggan and Changbai Mountains. In the southern part, forest biomass
was negatively correlated with latitude. Over the whole transect, high-intensity human
disturbance and the development of secondary forest between 30◦ N and 40◦ N are impor-
tant factors in the marked reduction in biomass. Therefore, there is a huge discrepancy
in biomass at latitudes 37.5–40.0◦ N and 40.0–42.5◦ N. The average biomass density of
coniferous forest was less than that of broadleaved forest. From the process and results of
the modelling, we demonstrated that climate is the dominant factor affecting biomass. Both
the quantity and distribution of air temperature and precipitation can directly affect biomass
density.

Though the estimates we obtained are reasonable, errors still exist. Because it is difficult
to obtain field-measured biomass data within the NSTEC, this article is mainly based on
historical inventory data. These data were derived from various sources and ambiguous time
ranges and cannot exactly match the TM data in time series, which may lead to estimation
errors. The spatial mismatch between ground reference data and pixel size of the TM data is
another likely source of error. The bands transition between MODIS and TM also reduced
the precision of biomass estimation.

Acknowledgements
This research was supported by the National Natural Science Foundation of China
(No. 40801138, No. 41071251), the National Key Basic Research and Development Programme
(No. 2010CB833504), and the Non-Profit National Environmental Protection Industrial Special
Research Project (No. 2011467030–01). The authors gratefully acknowledge Tianxiang Luo for his
contribution to obtaining the biomass inventory data used in this study.

References
Barbosa, P. M., D. Stroppiana, J. M. Gregoire, and J. M. C. Pereira. 1999. “An Assessment of

Vegetation Fire in Africa (1981–1991): Burned Areas, Burned Biomass, and Atmospheric
Emissions.” Global Biogeochemical Cycles 13: 933–950.

Curran, P. J., and A. M. Hay. 1986. “The Importance of Measurement Error for Certain Procedure
in Remote Sensing of Optical Wavelengths.” Photogrammetric Engineering and Remote Sensing
52: 229–241.

Dong, J. R., R. K. Kaufmann, R. B. Myneni, C. J. Tucker, P. E. Kauppi, J. Liski, W. Buermann,
V. Alexeyev, and M. K. Hughes. 2003. “Remote Sensing Estimates of Boreal and Temperate
Forest Woody Biomass: Carbon Pools, Sources, and Sinks.” Remote Sensing of Environment 84:
393–410.

Foody, G. M. 2003. “Remote Sensing of Tropical Forest Environments: Towards the Monitoring
of Environmental Resources for Sustainable Development.” International Journal of Remote
Sensing 24: 4035–4046.

Foody, G. M., D. S. Boyd, and M. E. J. Cutler. 2003. “Predictive Relations of Tropical Forest
Biomass from Landsat TM Data and Their Transferability between Regions.” Remote Sensing
of Environment 85: 463–474.

Hame, T., A. Salli, K. Andersson, and A. Lohi. 1997. “A New Methodology for the Estimation
of Biomass of Conifer-Dominated Boreal Forest Using NOAA AVHRR Data.” International
Journal of Remote Sensing 18: 3211–3243.

Hou, X. Y., ed. 2001. Vegetation Atlas of China 1: 1 000 000. Beijing: Science Press.
Huete, A. R. 1988. “A Soil-Adjusted Vegetation Index (Savi).” Remote Sensing of Environment 25:

295–309.
Hutchinson, M. F. 2001. ANUSPLIN Version 4.2. Canberra: Centre for Resource and Environmental

Studies, Australian National University.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

gr
ap

hi
c 

Sc
ie

nc
es

 &
 N

at
ur

al
 R

es
ou

rc
es

 R
es

ea
rc

h]
 a

t 0
2:

42
 1

8 
Ju

ly
 2

01
3 



5610 Y. Gao et al.

Lu, D. 2005. “Aboveground Biomass Estimation Using Landsat TM Data in the Brazilian Amazon.”
International Journal of Remote Sensing 26: 2509–2526.

Lu, D. 2006. “The Potential and Challenge of Remote Sensing-Based Biomass Estimation.”
International Journal of Remote Sensing 27: 1297–1328.

Luo, T. 1996. Patterns of Net Primary Productivity for Chinese Major Forest Types and Their
Mathematical Models. Beijing: Commission for Comprehensive Survey of Natural Resources,
Chinese Academy of Science.

Mayer, D. G., and D. G. Butler. 1993. “Statistical Validation.” Ecological Modelling 68: 21–32.
Muukkonen, P., and J. Heiskanen. 2007. “Biomass Estimation Over a Large Area Based on Standwise

Forest Inventory Data and ASTER and MODIS Satellite Data: A Possibility to Verify Carbon
Inventories.” Remote Sensing of Environment 107: 617–624.

Nelson, R. F., D. S. Kimes, W. A. Salas, and M. Routhier. 2000. “Secondary Forest Age and Tropical
Forest Biomass Estimation Using Thematic Mapper Imagery.” Bioscience 50: 419–431.

Peng, S. L., P. Zhao, H. Ren, and F. Y. Zheng. 2002. “The Possible Heat-Driven Pattern Variation of
Zonal Vegetation and Agricultural Ecosystems Along the North-South Transect of China Under
the Global Change.” Earth Science Frontiers 9: 217–226.

Qi, J., A. Chehbouni, R. Huete, Y. H. Kerr, and S. Sorooshian. 1994. “A Modified Soil Adjusted
Vegetation Index.” Remote Sensing of Environment 48: 119–126.

Rossi, S., A. Rampini, S. Bocchi, and M. Boschetti. 2010. “Operational Monitoring of Daily Crop
Water Requirements at the Regional Scale with Time Series of Satellite Data.” Journal of
Irrigation and Drainage Engineering 136: 225–231.

Roy, P., and S. A. Ravan. 1996. “Biomass Estimation Using Satellite Remote Sensing Data: An
Investigation on Possible Approaches for Natural Forest.” Journal of Biosciences 21: 535–561.

Thenkabail, P. S. 2004. “Inter-Sensor Relationships between IKONOS and Landsat-7 ETM+ NDVI
Data in Three Ecoregions of Africa.” International Journal of Remote Sensing 25: 389–408.

Tomppo, E., M. Nilsson, M. Rosengren, P. Aalto, and P. Kennedy. 2002. “Simultaneous Use
of Landsat-TM and IRS-1c WiFS Data in Estimating Large Area Tree Stem Volume and
Aboveground Biomass.” Remote Sensing of Environment 82: 156–171.

Vermote, E. F., and A. Vermeulen. 1999. Atmospheric Correction Algorithm: Spectral Reflectances
(MOD09) – Version 4.0. MODIS Algorithm Technical Background Document, Department of
Geography, University of Maryland, p. 107.

Wu, S. H., Y. H. Yin, D. Zheng, and Q. Y. Yang. 2005. “Aridity/Humidity Status of Land Surface
in China During the Last Three Decades.” Science in China Series D-Earth Sciences 48:
1510–1518.

Wu, Z. 1980. The Vegetation of China. Beijing: Science Press.
Wylie, B. K., D. J. Meyer, L. L. Tieszen, and S. Mannel. 2002. “Satellite Mapping of Surface

Biophysical Parameters at the Biome Scale Over the North American Grasslands: A Case Study.”
Remote Sensing of Environment 79: 266–278.

Zheng, D. L., J. Rademacher, J. Q. Chen, T. Crow, M. Bresee, J. Le Moine, and S. R. Ryu. 2004.
“Estimating Aboveground Biomass Using Landsat 7 ETM + Data Across a Managed Landscape
in Northern Wisconsin, USA.” Remote Sensing of Environment 93: 402–411.

Zhou, G. S., and Y. J. Zhang. 2008. “Terrestrial Transect Study on Driving Mechanism of Vegetation
Changes.” Science in China Series D-Earth Sciences 51: 984–991.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

gr
ap

hi
c 

Sc
ie

nc
es

 &
 N

at
ur

al
 R

es
ou

rc
es

 R
es

ea
rc

h]
 a

t 0
2:

42
 1

8 
Ju

ly
 2

01
3 




