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Abstract Solar radiation is an essential and important
variable to many models. However, it is measured at a
very limited number of meteorological stations in the
world. Developing method for accurate estimation of
solar radiation from measured meteorological variables
has been a focus and challenging task. This paper pre-
sents the method of solar radiation estimation using
support vector machine (SVM). The main objective of
this work is to examine the feasibility of SVM and
explore its potential in solar radiation estimation. A
total of 20 SVM models using different combinations
of sunshine ratio, maximum and minimum air tempera-
ture, relative humidity, and atmospheric water vapor
pressure as input attributes are explored using meteoro-
logical data at 15 stations in China. These models
significantly outperform the empirical models with an
average 14 % higher accuracy. When sunshine duration
data are available, model SVM2 using sunshine ratio
and air temperature range is proposed. It significantly
outperforms the empirical models with an average 26 %
higher accuracy. When sunshine duration data are not
available, model SVM19 using maximum temperature,
minimum temperature and atmospheric water vapor
pressure is proposed. It significantly outperforms the
temperature-based empirical models with an average of
18 % higher accuracy. The remarkable improvement
indicates that the SVM method would be a promising
alternative over traditional approaches for estimation of
solar radiation at any locations.

1 Introduction

A good knowledge of solar radiation is essential for many
applications, including agricultural, ecological, hydrological
and soil–vegetation–atmosphere transfer models (Liu et al.
2009b). Despite its significance, accurate long-term records
of solar radiation are not widely available due to the cost of
measuring equipment and its difficult maintenance and
calibration (Hunt et al. 1998). Lack of sufficient radiation
data has been reported in many countries such as the USA
(Ball et al. 2004; Garcia and Hoogenboom 2005), United
Kingdom (Rivington et al. 2005), Egypt (Mossad 2005),
India (Polo et al. 2011) and China (Chen and Li 2012a).
This has led researchers to develop methods to estimate
solar radiation for the sites where no direct solar radiation
data are available.

A number of alternatives have been developed to esti-
mated solar radiation. Major groups of those methods in-
clude stochastic algorithm (Richardson 1981; Hansen 1999;
Wilks and Wilby 1999), empirical relationship (Ångström
1924; Prescott 1940; Hargreaves et al. 1985), spatial inter-
polation (Ducco et al. 1998; Bechini et al. 2000; Xia et al.
2000; Soltani et al. 2003) and satellite-based models (Pinker
et al. 1995; Schillings et al. 2004; Janjai et al. 2009; Şenkal
2010). The stochastic method may be useful for generating
average theoretical scenarios. However, the generated data
cannot be used for model calibration and validation since it
neither generates extreme weather condition, nor produces
data which match actual weather condition at a particular
time of interest (Wallis and Griffiths 1995; Liu and Scott
2001). Satellite can provide data continuously in space and
time, thus the satellite-based model is promising for param-
eterization of solar radiation over large, remote area.
However, the low sampling frequency and coarse spatial
resolution of satellite-based methods renders them inade-
quate for site-specific application (Pinker et al. 1995).
Many satellite-based models have difficulties to produce
accurate results, the deviations between the results and the
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measurements are up to 40 % (Vignola et al. 2007; Janjai et
al. 2009). Spatial interpolation technique can predict values
at unknown locations and create surface from surrounding
points. The main problem, however, is the lack of sufficient
stations of solar radiation measurement.

The empirical relationship method using measured mete-
orological variables is attractive because of the good data
availability. In particular, the well-known sunshine- and
temperature-based models are widely used. Ångström
(1924) first proposed a simple linear equation to estimate
solar radiation using sunshine duration which was further
modified by Prescott (1940) (A-P). Several modified ver-
sions of the A-P model have subsequently been made by
adding more additional available meteorological variables
such as air temperature (Chen et al. 2004), relative humidity
(Ojosu and Komolafe 1987; Gopinathan 1988; Ododo et al.
1995) and atmospheric water vapor pressure (Garg and Garg
1982; Abdalla 1994). However, the accuracy improvements
of those modified versions were not validated in many
works (Kuye and Jagtap 1994; Ertekin and Yaldiz 1999;
Mossad 2005; Wu et al. 2007; Chen and Li. 2012b).
Gueymard et al. (1995) posed some fundamental questions
that how can the simple A-P model be improved to generate
more accurate long-term solar radiation data by those avail-
able climatological variables, and believed these research
questions remain unanswered. He also illustrated and
stressed the need for new avenues of approach that could
lead to improved models.

Although the sunshine-based method is generally more
accurate (Iziomon and Mayer 2002; Podestá et al. 2004;
Trnka et al. 2005), it is often limited since sunshine duration
is not commonly measured as air temperature. In this con-
text, Hargreaves et al. (1985) (H-S) proposed an equation to
estimate solar radiation using air temperature. Many revised
formulations were subsequently made by adding more
additional meteorological variables (De and Stewart 1993;
Hunt et al. 1998; Thornton and Running 1999; Chen et al.
2006). Although some authors claimed that their revised
models outperformed the H-S model, this may not always
be the cases in many comparative studies (Liu and Scott
2001; Manual et al. 2003; Ball et al. 2004; Wu et al. 2007;
Chen and Li 2012b). Moreover, models using air tempera-
ture sometimes cannot produce the results that meet the
requirement of applications (Choisnel et al. 1992; Chen et
al. 2004; Zhou et al. 2005). So, how can the temperature-
based models be improved to generate more accurate solar
radiation data? To fully take advantage of the easy
availability of commonly measured meteorological vari-
ables, it is very important and urgent to explore new
approaches that can produce more accurate long-term
solar radiation data than the traditional empirical methods
which seem to have difficulty in increasing the estimation
accuracy.

This is perhaps more critical now than ever before, be-
cause of the worldwide interest in renewable energy utiliza-
tion in areas where measured solar radiation data are scarce,
and the increasing needs of accurate long-term solar radia-
tion data for studying the global climate change (Gueymard
et al. 1995). In recent years, as the development of compu-
tational technology and sophisticated statistical methods,
machine learning method has been increasingly studied
and shown as a powerful tool in forecasting and regression.
Among the developed machine learning methods, support
vector machine (SVM), originally developed by Vapnik
(1995), has been widely applied in computer, environment
and hydrology researches (Lee and Verri 2003; Lu and
Wang 2005; Tirusew et al. 2006; Stanislaw and Konrad
2007). A number of studies have proved that SVM shows
better performance than neural network and other traditional
statistical models (Dibike et al. 2001; Liong and
Sivapragasam 2002; Kecman 2005; Chen et al. 2011).
Despite successes in many fields, there is no literature on
the application of SVM in solar radiation estimation. Thus,
the main objectives of this study are (1) to examine the
feasibility of SVM and explore its potential in estimation
of solar radiation from measured meteorological variables,
including sunshine duration, maximum and minimum air
temperature, relative humidity and atmospheric water vapor
pressure; (2) to investigate the effects of different inputs on
accuracy of SVM; and (3) to propose a selection strategy on
optimal SVM models for estimation of solar radiation under
different situations. Two scenarios are considered: (1) all of
those meteorological data are available, and (2) only sun-
shine duration data are not available.

2 Materials and methods

2.1 Study sites and data collection

A total of 15 stations with long-term available records of
solar radiation across China were used in this work. The
mapping of stations roughly range from 18° to 46°N
(latitude), from 79° to 127°E (longitude), and from 6 to
3,648 m altitude, covering five major climate zones
(Fig. 1): cool temperature zone (stations Haerbing,
Hailiutu and Wulumuqi), warm temperate zone (Beijing,
Xian, Jiuquan and Hetian), subtropical zone (Shanghai,
Changsha, Chengdu, Kunming and Guangzhou), tropical
(Sanya) zone and Qinghai–Tibet plateau climate zone
(Geermu and lasha). Table 1 shows the detailed geographi-
cal information of these meteorological stations.

Monthly mean daily solar radiation (MJ m−2), sunshine
duration (h), air temperature (°C) including maximum and
minimum, relative humidity (%) and atmospheric water
vapor pressure (kPa) were used in this study. Solar radiation
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is measured using pyranometer (DFY-4) (5 %). The type of
pyranometer used by the China Meteorological Bureau was
change since 1993. However, the homogeneity of the radi-
ation series is probably little affected, as the pyranometer
models have been calibrated to the same standard (Yang et
al. 2009) following the guide of the WMO (Liu et al.
2009a; Chen et al. 2011). Other relevant meteorological
variables are routinely measured following the guidelines
of the WMO. The data were obtained from the National

Meteorological Information Center (NMIC), China
Meteorological Administration (CMA). The period of re-
cords ranges from 18 to 41 years covering the period be-
tween 1970 and 2010. Quality control tests were conducted
by the supplier. Two data sets were created for each station.
About 75 % of the total records were used for training SVM
models and calibrating the empirical models, and the re-
mainder for validation. The detailed temporal periods are
listed in Table 1.

0 1,000500
Km

Fig. 1 Location of the study meteorological stations (stations are numbered in compliance with Table 1). I, II, III, IV, and V represent cool
temperature, warm temperate, Qinghai–Tibet plateau climate, subtropical, and tropical zones, respectively

Table 1 Detailed information of the study meteorological stations

Station ID Station name Latitude (N) Longitude (E) Altitude (m) Training period Validation period

1 Haerbing 126.77 45.75 142.3 1970–2000 2001–2010

2 Haliutu 108.52 41.57 1,288.0 1992–2005 2006–2010

3 Wulumuqi 87.65 43.78 935.0 1970–2000 2001–2010

4 Hetian 79.93 37.13 1,374.5 1970–2000 2001–2010

5 Jiuquan 98.48 39.77 1,477.2 1993–2005 2006–2010

6 Beijing 116.47 39.81 31.3 1970–2000 2001–2010

7 Xian 108.93 34.31 397.5 1970–1996 1997–2005

8 Geermu 94.91 36.42 2,807.6 1970–2000 2001–2010

9 Lasha 91.13 29.67 3,648.7 1970–2000 2001–2010

10 Chendu 104.02 30.67 506.1 1970–1994 1995–2003

11 Shanghai 121.48 31.41 6.0 1991–2005 2006–2010

12 Changsha 112.92 28.22 68.0 1987–2004 2005–2010

13 Kunming 102.68 25.02 1,892.4 1970–2000 2001–2010

14 Guangzhou 113.33 23.17 41.0 1970–2000 2001–2010

15 Sanya 109.52 18.23 5.9 1992–2005 2006–2010

Estimation of solar radiation using support vector machine 629



2.2 Theory of support vector machine

A brief theory of SVM is presented in this section. More
detailed information on the subject can be found in the work
of Vapnik (1995, 1998). The SVM, originally developed by
Vapnik and his coworkers, has been widely applied in classi-
fication, regression and forecasting. Comparing to traditional
learning machine methods, there are several attractive charac-
teristics of SVM. First of all, SVM implements the principle of
Structural Risk Minimization, which attempts to minimize an
upper bound of generalization error rather than minimize the
local training error. This is the significant difference from
commonly used principle of empirical risk minimization,
which is employed by the traditional learning machine
methods. Secondly, SVM estimates the regression using a
set of kernel functions which are defined in a high dimension-
al space. Thirdly, SVM uses a risk function consisting of the
empirical error and a regularization term which is derived
from the structure risk minimization principle.

Given a set of data pointsG={(xi,di)}i
n (xi is the input vector,

di is the desired value and n is the total number of data patterns),
SVM approximates the function using the following form:

f xð Þ ¼ wϕ xð Þ þ b ð1Þ

where ϕ (x) is the high-dimensional feature space which is
nonlinearly mapped from the input space x. The coefficients
w and b are estimated by minimizing the regularized risk
function below (Vapnik 1995, 1998):

RSVMs Cð Þ ¼ C
1

n

Xn
i¼1

L di; yið Þ þ 1

2
wk k2 ð2Þ

In the regularized risk function, the termC 1
n ∑

n

i¼1
L di; yið Þ is

the empirical error (risk), and measured by function Lε
given below:

Lε d; yð Þ ¼ d−yj j−ε d−yj j≥ε
0 otherwise

�
ð3Þ

The term 1
2 wk k2 is the regularization term. C is referred to

as the regularized constant and determines the trade-off
between the empirical risk and the regularization term.
Increasing the value of C will result in the relative impor-
tance of the empirical risk with respect to the regularization
term to grow. ε denotes the tube size, and it is equivalent to
the approximation accuracy placed on the training data
points.

To obtain the estimations of w and b, Eq. 2 is
transformed to the primal function given by Eq. 3 by
introducing the positive slack variables ζi and ζi* as
follows (Vapnik 1995):

Minimize RSVMs w; ζ �ð Þ
� �

¼ 1

2
wk k2 þ C

Xn
i¼1

ζi þ ζi
�ð Þ ð4Þ

Subjected to
di−wϕ xið Þ−bi≤εþ ζi

wϕ xið Þ þ bi−di≤εþ ζi
�; ζi

�≥0 ð5Þ

Finally, by introducing Lagrange multipliers and
exploiting the optimality constraints, the decision function
given by Eq. 1 has the following explicit form:

f x; ai; ai
�ð Þ ¼

Xn
i¼1

ai−ai�ð ÞK x; xið Þ þ b ð6Þ

The detail computation procedure can be found in the
work of Vapnik et al. (1996).

The term K(xi,xj) is called kernel function, the value of
kernel function K(xi,xj) is equal to the inner product of two
vectors xi and xj in the feature space φ(xi) and φ(xj), that is,
K(xi,xj)=φ(xi)*φ(xj). Thus, all computations related to φ(x)
can be performed by the kernel function in input space. The
elegance of using the kernel function is that one can deal
with feature spaces of arbitrary dimensionality without hav-
ing to explicitly compute the map φ(x). Any function satis-
fying Mercer’s condition can be used as kernel function
(Vapnik et al. 1996). In this study, the common radial basis

Table 2 The study SVM
models with different input
attributes

aS, So, Tmax, Tmin, RH, and VP
denote monthly mean sunshine
duration, potential sunshine
duration, maximum air tempera-
ture, minimum air temperature,
relative humidity, and atmo-
spheric water vapor pressure,
respectively

Model Input attributesa Model Input attributesa

SVM1 S/So SVM11 S/So, Tmax, Tmin, VP

SVM2 S/So, Tmax–Tmin SVM12 S/So, Tmax, Tmin, RH, VP

SVM3 S/So, RH SVM13 Tmax–Tmin

SVM4 S/So, VP SVM14 Tmax–Tmin, RH

SVM5 S/So, RH, VP SVM15 Tmax–Tmin, VP

SVM6 S/So, Tmax–Tmin, RH SVM16 Tmax–Tmin, RH, VP

SVM7 S/So, Tmax–Tmin,VP SVM17 Tmax, Tmin

SVM8 S/So, Tmax–Tmin, RH, VP SVM18 Tmax, Tmin, RH

SVM9 S/So, Tmax, Tmin SVM19 Tmax, Tmin, VP

SVM10 S/So, Tmax, Tmin, RH SVM20 Tmax, Tmin, RH, VP
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kernel function K(xi,xj)=exp(−γ║xi, −xj║2) is used, where d
and γ are the kernel parameters. A total of 20 SVM models
(Table 2) using different combinations of sunshine ratio,
maximum and minimum air temperature, relative humidity,
and atmospheric water vapor pressure as input attributes are
explored and implemented by LIBSVM (Version 3.12)
package, which is a library for SVM developed by Chang
and Lin (2011). This package has helped users to easily
apply SVM to applications and gained wide popularity in
machine learning and many areas.

2.3 Empirical models

2.3.1 A-P model

Ångström (1924) proposed a simple linear relationship be-
tween the ratio of actual solar radiation to extra-terrestrial
solar radiation and the ratio of actual sunshine duration to
potential sunshine duration, which was further modified by
Prescott (1940) with the following form:

H s

H a
¼ a

S

So
þ b ð7Þ

where Hs is actual solar radiation (MJ m−2), Ha is extra-
terrestrial solar radiation (MJ m−2), S is the actual
sunshine duration (h), So is potential sunshine duration
(h), and a and b are empirical parameters which are
calibrated from regression analysis between Hs/Ha and
S/So. The extra-terrestrial solar radiation and potential
sunshine duration are calculated using the equations
detailed by Allen et al. (1998).

H a ¼ 37:6d ωsinφsinδ þ cosφcosδsinωð Þ ð8Þ

d ¼ 1þ 0:033cos
2π
365

n

� �
ð9Þ

δ ¼ 0:4093sin
2π
365

n−1:39
� �

ð10Þ

ω ¼ arccos −tanφtanδð Þ ð11Þ

So ¼ 24ω
.
π ð12Þ

where d is the relative distance between the sun and the
earth, ω is sunset hour angle (rad), φ is latitude (rad), δ is
solar declination angle (rad), and n is the number of the day
of year starting from the first of January.

2.3.2 H-S model

Hargreaves et al. (1985) suggested a simple equation for
estimation of solar radiation using air temperature range (the
difference between maximum and minimum air tempera-
ture) to solve the problem of availability of sunshine dura-
tion data.

H s

H a
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax−Tmin

p þ b ð12Þ

Table 4 Bayesian information criterion of sunshine duration-based SVM modelsa

Station SVM1 SVM2 SVM3 SVM4 SVM5 SVM6 SVM7 SVM8 SVM9 SVM10 SVM11 SVM12

Haerbing 4.509 −1.371 8.2211 13.7812 −0.333 −0.902 3.126 1.704 4.118 3.997 2.325 7.1310

Haliutu 47.591 48.992 51.225 50.534 52.717 51.996 49.443 55.7510 53.098 55.349 55.8811 59.7112

Wulumuqi −2.841 1.623 2.365 4.278 6.3010 1.382 1.784 2.826 5.599 11.0212 3.427 6.6311

Hetian 52.273 49.621 55.989 58.6312 54.847 50.322 54.326 55.398 53.935 58.0011 53.224 57.831

Jiuquan −11.735 −13.411 −11.963 −10.3506 −9.487 −11.804 −12.282 −8.369 −9.088 −4.8410 −4.3211 0.6912

Beijing −10.9712 −29.961 −12.1111 −13.2710 −23.035 −24.103 −17.658 −18.807 −27.222 −19.176 −23.134 −17.129

Xian 16.942 16.611 18.873 19.715 21.868 21.187 19.766 24.189 19.664 24.3411 24.2810 27.3012

Geermu −5.6612 −47.251 −18.4611 −19.0110 −38.756 −45.383 −19.489 −40.964 −45.492 −38.667 −40.025 −34.218

Lasha −17.844 −22.931 −13.068 −18.873 −12.1611 −12.21 −16.575 −7.5412 −22.052 −15.407 −15.926 −12.699

Chendu 23.4610 20.063 23.459 23.428 21.344 23.257 21.715 27.0112 16.711 21.856 17.752 25.5311

Shanghai −1.3012 −11.682 −1.9111 −2.4510 −3.238 −9.183 −3.159 −4.875 −12.441 −4.426 −7.514 −3.627

Changsha 34.652 33.301 39.996 40.348 37.724 40.057 39.425 43.4811 37.203 42.049 42.5210 46.9012

Kunming 49.3011 40.604 48.7910 46.217 40.343 43.635 47.938 48.169 39.531 40.042 46.216 52.9112

Guangzhou 1.383 −0.431 3.576 5.989 0.732 3.395 6.1910 3.717 3.284 4.518 7.7711 12.7012

Sanya 28.061 29.552 31.564 31.585 31.796 34.078 31.523 37.1911 32.937 35.819 36.931 40.5312

Overall ranking 4 1 8 9 5 6 3 11 2 10 7 12

a The superscript numbers represent for the Bayesian information criterion-based ranking of each model at different station
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where Tmax and Tmin are the maximum and minimum air
temperature, respectively, and a and b are empirical parameters.

2.3.3 Chen model

Chen et al. (2004) modified A-P model by introducing air
temperature range and claimed better results at 32 stations
all over China:

H s

H a
¼ a

S

So
þ bln Tmax−Tminð Þ þ c ð13Þ

where a, b and c are empirical parameters.

2.3.4 Local models

Except these well-known models, two equations were cre-
ated using the training data sets through multiple regression
analysis (hereafter local1 [Eq. 14] and local2 [Eq. 15]).

H

H a
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax−Tmin

p þ bRHþ cVPþ d ð14Þ

H

Ha
¼ a

S

So
þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmax−Tminð Þ

p
þ cRHþ dVPþ e ð15Þ

where RH and VP are monthly mean relative humidity and
atmospheric water vapor pressure, respectively, and a, b, c,
d and e are empirical parameters.

2.4 Performance criteria

Root mean square error (RMSE) and determination coeffi-
cient (R2) are used to evaluate model performance. RMSE
provides information on the short term performance of the
correlations by allowing a term by term comparison of the
actual deviation between the estimated and measured
values. Lower values of RMSE indicate a better perfor-
mance. In order to give a general judgement of the model
performance at different station, RMSE values are also
expressed in percentage (%) which are normalized by the
respective measured means. The metric R2 varying between
0 and 1 is adopted to measure the fit of model, higher the
value, better the fit. RMSE is calculated by the following
equations.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

yi−byi� �2

n

vuuut
ð16Þ

where n, y, and by represent the total number of evaluating
data, the observation, and the estimation, respectively.

When developing models, it is possible to increase the
likelihood by adding more parameters, but doing so may T
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result in parsimoniousness. Bayesian information criterion
(BIC) resolves this problem by introducing a penalty term
for the number of parameters. It has been widely used to
select the optimal model identified by the minimum value.

BIC ¼ nln
RSS

n

� �
þ kln nð Þ ð17Þ

where k and RSS are the number of parameters and the
residual sum of squares from the model, respectively.

3 Results

3.1 Performances of SVM models

3.1.1 Sunshine duration data are available

Performances of the developed SVM models are presented
in Tables 3, 4, 5 and 6. When sunshine duration data are
available, SVM models (SVM1–12) give good performances
with RMSE <2.3 MJ m−2 (15 %) and the average RMSE of
1.097 MJ m−2 (8.1 %). On average, SVM12 yields the lowest
RMSE of 1.05 MJ m−2 (7.8 %), while SVM6–11 have a very
similar RMSE values to SVM12. Obviously, models perform
differently at different stations. Each of them is ranked based
on RMSE for each station and presented in Table 3. SVM8
performs best at Geermu, Haerbing, Guangzhou and Jiuquan,
SVM9 at Changsha and Shanghai, SVM10 at Hailiutu,
Kunming and Sanya, SVM11 at Beijing and Chengdu, and
SVM12 at Hetian, Lasha, Wulumuqi and Xian.

SVM8–12 seem the best at the corresponding stations,
while they may need more input parameters, for example,

SVM12 needs five, SVM10–11 have four, and only one for
SVM1. When the parsimoniousness of the models is con-
sidered by taking into account the number of input param-
eters (Table 4), SVM2 using sunshine ratio and air
temperature range performs best at nine stations, SVM9
using sunshine ratio, maximum and minimum air tempera-
ture performs best at three stations, and SVM1 using sun-
shine ratio only at the remainder (Table 4). According to the
overall ranking, SVM2 is superior to other models.

SVM2 and SVM9 have an average 10 % and 12 % lower
RMSE than SVM1, respectively; suggesting that additional
input of air temperature can significantly improve the accu-
racy of SVM model which uses sunshine ratio only. This is
also indicated by the lower RMSE (average 12 %) of
SVM6–8, SVM10–12 than SVM1. SVM3–4 give similar
performances to SVM1, suggesting that atmospheric water
vapor pressure and relative humidity do not adequately
account for the improvement in estimation accuracy. The
similar average RMSE of SVM6–8 to those of SVM2 fur-
ther confirms this result. Therefore, if all of those meteoro-
logical variables are available, it is unnecessary to take into
account atmospheric water vapor pressure and relative hu-
midity. SVM2 is proposed and can provide a good method
for estimation of monthly mean daily solar radiation.

3.1.2 Sunshine duration data are not available

When sunshine duration data are not available, SVM
models (SVM13–20) return reasonable results (Table 5)
with RMSE <2.6 MJ m−2 (22 %) and the average RMSE
of 1.485 MJ m−2 (11.1 %). SVM20, which performs best at
Geermu, Hailiutu, Hetian, Jiuquan, Lasha and Shanghai,
yields lowest average RMSE of 1.389 MJ m−2 (10.4 %)

Table 6 Bayesian information
criterion of air temperature based
SVM modelsa

aThe superscript numbers repre-
sent for Bayesian information
criterion based ranking of each
model at different stations

Station SVM13 SVM14 SVM15 SVM16 SVM17 SVM18 SVM19 SVM20

Haerbing 22.235 29.408 20.644 20.293 20.242 28.967 18.851 25.336

Haliutu 55.562 59.056 53.961 58.064 56.603 59.927 58.325 61.618

Wulumuqi 32.595 32.746 28.622 29.993 33.147 35.848 27.341 32.224

Hetian 69.804 72.927 64.471 67.042 72.386 75.378 67.543 71.015

Jiuquan 10.635 14.817 −2.141 2.083 13.856 18.708 1.072 4.964

Beijing 44.705 46.116 31.571 33.932 46.687 48.498 38.793 39.114

Xian 20.342 23.827 20.983 22.144 23.766 27.818 19.531 23.635

Geermu 19.677 21.498 12.653 11.712 12.884 13.985 10.801 15.366

Lasha 44.706 51.228 37.042 37.313 43.665 47.857 36.591 41.324

Chendu 51.803 55.646 50.982 55.595 55.234 60.568 50.661 56.987

Shanghai 35.655 39.537 29.831 32.202 36.796 41.158 33.143 35.294

Changsha 61.426 67.098 53.202 56.113 61.295 64.877 52.991 59.374

Kunming 79.477 82.338 72.562 75.063 75.324 77.946 71.441 77.355

Guangzhou 66.105 69.698 63.472 65.344 64.393 68.286 61.581 68.457

Sanya 45.193 48.547 43.151 46.915 44.232 47.386 45.744 49.918

Overall ranking 4 7 2 3 5 8 1 6
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followed by SVM19 which performs best at Changsha,
Chengdu, Guangzhou, Haerbing, Kunming, Sanya,
Wulumuqi and Xian. When the parsimoniousness of
SVM13–20 is considered (Table 6), SVM models (SVM15
and 19) using air temperature in combination with atmo-
spheric water vapor pressure perform better than other
models. According to overall ranking (Table 6), SVM19 is
the optimal model followed by SVM15.

SVM15 and 19 are superior to SVM13 and 17 with an
average of 10 % higher accuracy, suggesting that an

additional input of atmospheric water vapor pressure can
significantly improve the accuracy of the SVM models
which uses air temperature only. This is also indicated by
the lower RMSE (average 10 %) of SVM16 and 20 than
SVM14 and 18. While SVM 14 and 18 give similar perfor-
mances to SVM 13 and 17, suggesting that relative humidity
does not contribute to the improvement in estimation accu-
racy. The similar RMSE of SVM 20 to those of 19 further
confirms this result, and therefore additional inclusion of
relative humidity is unnecessary.

Table 7 Calibrated parameters of the study empirical models

Station A-Pa H-Sb Chenc

a b R2 a b R2 a b c R2

Haerbing 0.456 0.240 0.502 0.122 0.095 0.378 0.384 0.102 0.034 0.534

Haliutu 0.510 0.249 0.580 0.081 0.322 0.391 0.505 0.006 0.236 0.581

Wulumuqi 0.511 0.209 0.788 0.213 −0.181 0.504 0.450 0.069 0.083 0.799

Hetian 0.430 0.296 0.675 0.111 0.165 0.381 0.401 0.058 0.169 0.692

Jiuquan 0.402 0.316 0.561 0.100 0.227 0.368 0.377 0.078 0.129 0.584

Beijing 0.601 0.141 0.741 0.184 −0.088 0.420 0.544 0.055 0.046 0.749

Xian 0.416 0.235 0.653 0.179 −0.177 0.533 0.298 0.130 −0.019 0.718

Geermu 0.572 0.255 0.707 0.179 −0.006 0.405 0.531 0.128 −0.052 0.732

Lasha 0.499 0.297 0.442 0.190 −0.076 0.412 0.504 −0.005 0.307 0.442

Chendu 0.563 0.161 0.788 0.210 −0.262 0.650 0.427 0.093 0.012 0.814

Shanghai 0.550 0.172 0.789 0.140 0.047 0.385 0.531 0.029 0.126 0.793

Chasha 0.612 0.127 0.869 0.275 −0.411 0.516 0.588 0.025 0.086 0.870

Kunming 0.522 0.190 0.806 0.200 −0.185 0.715 0.488 0.024 0.152 0.807

Guangzhou 0.554 0.137 0.854 0.345 −0.588 0.701 0.419 0.156 −0.122 0.881

Sanya 0.352 0.300 0.545 0.131 0.157 0.384 0.327 0.117 0.098 0.636

Station Local1d Local2e

a b c d R2 a b c d e R2

Haerbing 0.113 −0.022 0.031 −2.974 0.449 0.369 0.056 −0.015 0.029 −2.748 0.610

Haliutu 0.099 −0.056 0.068 −5.633 0.499 0.374 0.022 −0.062 0.042 −3.382 0.692

Wulumuqi 0.062 −0.353 0.017 −1.034 0.666 0.382 0.020 −0.123 0.008 −0.467 0.818

Hetian 0.214 0.086 0.097 −8.640 0.595 0.293 0.097 0.003 0.048 −4.111 0.745

Jiuquan 0.147 −0.034 0.060 −5.046 0.437 0.314 0.070 0.000 0.018 −1.385 0.598

Beijing 0.187 −0.001 0.035 −3.605 0.623 0.463 0.071 0.055 0.018 −1.865 0.779

Xian 0.144 −0.142 −0.009 0.932 0.552 0.295 0.058 −0.124 −0.004 0.560 0.729

Geermu 0.175 −0.093 0.113 −8.129 0.492 0.469 0.077 −0.041 0.028 −1.969 0.744

Lasha 0.197 −0.011 0.048 −3.243 0.426 0.513 0.022 0.070 −0.023 1.706 0.445

Chendu 0.167 −0.006 −0.037 3.356 0.752 0.363 0.052 −0.151 −0.021 2.219 0.840

Shanghai −0.005 −1.020 −0.046 5.846 0.489 0.466 −0.008 −0.330 −0.021 2.644 0.830

Chasha 0.171 −0.448 −0.051 5.353 0.693 0.554 0.039 0.112 −0.013 1.259 0.883

Kunming 0.134 −0.333 0.041 −3.051 0.738 0.477 −0.031 −0.250 0.031 −2.030 0.819

Guangzhou 0.271 −0.459 −0.050 5.071 0.773 0.400 0.086 −0.185 −0.008 0.931 0.887

Sanya 0.266 0.001 −0.064 6.251 0.424 0.319 0.139 0.194 −0.002 −0.026 0.659

a Ångström (1924), Prescott (1940)
b Hargreaves et al. (1985)
c Chen et al. (2004)
d Local regressive model (Eq. 14)
e Local regressive model (Eq. 15)
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3.2 Performance of the empirical models

The locally calibrated parameters and performances of
the empirical models are presented in Tables 7 and 8,
respectively. All the empirical models perform well with
RMSE varying between 0.886 (4.6 %) and 2.675 MJ m−2

(21.5 %). Models including sunshine ratio (A-P, Chen
and Local2) perform much better than models including
air temperature (H-S and Local1) with 7–40 % (average
23 %) higher accuracy. On average, Local2 model has
the lowest RMSE of 1.297 MJ m−2 (9.7 %). While
Chen (RMSE=1.309 MJ m−2 (9.8 %)) and A-P
(RMSE=1.343 MJ m−2 (10 %)) models give similar
performances to Local2. This indicates that air temper-
ature range, atmospheric water vapor pressure and rela-
tive humidity, as introduced in an additive form, do not
adequately account for the improvement in accuracy of
the A-P model. Our results are different from those
reported by Chen et al. (2004), who introduced air
temperature range to A-P model and claimed a better
performance, but are consistent with those of Wu et al.
(2007), who reported similar performances between
Chen and the original A-P model. Local1 model is
superior to the widely used H-S model with 4–16 %
(average 8 %) higher accuracy, indicating that additional
inclusion of atmospheric water vapor pressure and

relative humidity can significantly improve the accuracy
of the temperature-based models.

3.3 Comparison of SVM between empirical models

To demonstrate the potential of SVM, further comparisons
of the results of SVM with those of empirical models are
made. SVM1, SVM2 and SVM8 show a 4–33 % (average
16 %) lower RMSE than the corresponding A-P, Chen and
Local2 models. This illustrates that SVM significantly out-
performs the empirical model. The lower RMSE (average
11 %) of SVM13 and 16 than the corresponding H-S and
Local1 models confirms this result. When sunshine duration
data are available, the optimal model (SVM2) shows a 13–
35 % (average 21 %), 20–59 % (average 39 %), 11–33 %
(average 19 %), 17–55 % (average 34 %), and 10–33 %
(average 18 %) lower RMSE (average 26 %) than A-P, H-S,
Chen, Local1, and Local2 models, respectively. When sun-
shine duration data are not available, the optimal model
(SVM19) shows a 12–35 % (average 21 %) and 8–24 %
(average 15 %) lower RMSE (average 18 %) than H-S and
Local1 models, respectively. These results further prove the
superiority of SVM over the empirical models. The remark-
able improvement indicates that SVM method would be a
promising alternative over the traditional approaches for
estimation of solar radiation at any locations.

Table 8 Root mean square errors (RMSE) of the study empirical models

Station A-Pa H-Sb Chenc Local1d Local2e

Haerbing 1.141 (9.09 %) 1.387 (11.04 %) 1.105 (8.79 %) 1.281 (10.2 %) 1.136 (9.05 %)

Haliutu 2.51 (13.14 %) 2.675 (14 %) 2.389 (12.51 %) 2.567 (13.44 %) 2.369 (12.4 %)

Wulumuqi 1.098 (7.74 %) 1.507 (10.62 %) 1.059 (7.46 %) 1.381 (9.73 %) 1.049 (7.39 %)

Hetian 1.686 (10.87 %) 1.896 (12.22 %) 1.596 (10.29 %) 1.784 (11.5 %) 1.568 (10.1 %)

Jiuquan 0.936 (5.68 %) 1.281 (7.77 %) 0.935 (5.67 %) 1.09 (6.61 %) 0.886 (5.37 %)

Beijing 1.019 (7.66 %) 1.581 (11.87 %) 1.019 (7.65 %) 1.388 (10.42 %) 0.995 (7.47 %)

Xian 1.333 (11.56 %) 1.513 (13.12 %) 1.333 (11.56 %) 1.456 (12.63 %) 1.319 (11.44 %)

Geermu 0.953 (8.85 %) 1.427 (13.25 %) 0.935 (8.68 %) 1.206 (11.19 %) 0.925 (8.59 %)

Lasha 0.956 (4.67 %) 1.454 (7.1 %) 0.933 (4.56 %) 1.367 (6.68 %) 0.937 (4.58 %)

Chendu 1.379 (16.04 %) 1.676 (19.49 %) 1.338 (15.55 %) 1.607 (18.68 %) 1.345 (15.63 %)

Shanghai 1.026 (8.24 %) 1.77 (14.22 %) 1.005 (8.07 %) 1.591 (12.78 %) 1.012 (8.13 %)

Changsha 1.747 (16.49 %) 2.272 (21.46 %) 1.703 (16.08 %) 2.075 (19.6 %) 1.674 (15.81 %)

Kunming 1.605 (10.54 %) 1.949 (12.8 %) 1.572 (10.33 %) 1.857 (12.2 %) 1.569 (10.31 %)

Guangzhou 1.117 (9.54 %) 1.767 (15.09 %) 1.121 (9.57 %) 1.697 (14.49 %) 1.08 (9.22 %)

Sanya 1.642 (10.33 %) 2.062 (12.98 %) 1.596 (10.04 %) 1.912 (12.03 %) 1.591 (10.02 %)

RMSE values are given both in absolute values and in percentage
a Ångström (1924), Prescott (1940)
b Hargreaves et al. (1985)
c Chen et al. (2004)
d Local regressive model (Eq. 14)
e Local regressive model (Eq. 15)
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4 Conclusions

The feasibility and potential of SVM in estimation of solar
radiation are investigated in this work. Twenty SVM models
using different combinations of sunshine ratio, maximum
and minimum air temperature, relative humidity, and atmo-
spheric water vapor pressure as input attributes are explored.
All the SVM models give good performances and signifi-
cantly outperform the empirical models. When sunshine
duration data are available, input of air temperature signif-
icantly improves the accuracy of the SVM models which
uses sunshine ratio only. While atmospheric water vapor
pressure and relative humidity do not adequately account
for improvement in estimation accuracy. The optimal model
(SVM2) using sunshine ratio and air temperature range is
proposed. When sunshine duration data are not available,
input of atmospheric water vapor pressure significantly im-
proves the accuracy of the SVM models which uses air
temperature only. While relative humidity does not contrib-
ute to the improvement in estimation accuracy. The optimal
model (SVM19) using maximum temperature, minimum
temperature and atmospheric water vapor pressure is pro-
posed in this case. The remarkable improvement indicates
that the SVM method would be a promising alternative over
the traditional approaches for estimation of solar radiation at
any locations.
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