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Estimation of solar radiation from sunshine duration offers an important alternative in the absence of
measured solar radiation. However, due to the dynamic nature of atmosphere, accurate estimation of
daily solar radiation has been being a challenging task. This paper presents an application of Support vec-
tor machine (SVM) to estimation of daily solar radiation using sunshine duration. Seven SVM models
using different input attributes and five empirical sunshine-based models are evaluated using meteoro-
logical data at three stations in Liaoning province in China. All the SVM models give good performances
and significantly outperform the empirical models. The newly developed model, SVM1 using sunshine
ratio as input attribute, is preferred due to its greater accuracy and simple input attribute. It performs
better in winter, while highest root mean square error and relative root mean square error are obtained
in summer. The season-dependent SVM model is superior to the fixed model in estimation of daily solar
radiation for winter, while consideration of seasonal variation of the data sets cannot improve the results
for spring, summer and autumn. Moreover, daily solar radiation could be well estimated by SVM1 using
the data from nearby stations. The results indicate that the SVM method would be a promising alternative
over the traditional approaches for estimation of daily solar radiation.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Solar radiation arriving on the earth’s surface plays an impor-
tant role in energy balance of the Earth–Atmosphere system. A
good knowledge of daily solar radiation is essential for many
applications, such as agricultural, ecological, hydrological and
soil–vegetation–atmosphere transfer models [1]. However, solar
radiation is measured at a very limited number of meteorological
stations in the world. This is mainly due to the cost of measuring
equipment and its difficult maintenance and calibration [2].
Numerous methods have been developed to estimate solar radia-
tion for the places where no measured values are available. The
most common method is to determine this parameter by empirical
correlations using other measured meteorological variables such as
sunshine duration [3,4] and air temperature [5,6]. These variables
are easily and reliably measured, and data are widely available. It
is generally recognized that models based on sunshine duration
are more accurate than models involving other standard meteoro-
logical observations [7–11].
,

The first attempt at estimation of solar radiation from sunshine
duration is carried out by Angstrom [3] who proposed a simple lin-
ear relationship between the ratio of actual global radiation to the
corresponding value on a clear day and the ratio of actual sunshine
duration to the maximum possible sunshine duration. By replacing
the solar radiation on a clear day with the extra-terrestrial radia-
tion, Prescott [4] proposed a modified version with the following
form (hereafter A–P model):

Rs
Ra
¼ a

S
So
þ b ð1Þ

where Rs is actual solar radiation, Ra is extra-terrestrial solar radi-
ation, S is actual sunshine duration, So is potential sunshine dura-
tion, a and b are empirical parameters which were suggested as
0.54 and 0.22, respectively, by Prescott [4].

Several modified versions were subsequently made since the
development of A–P model. Ögelman et al. [12] developed a qua-
dratic form which performed well in Adana and Ankara, Turkey.
Bahel et al. [13] proposed a cubic form based on data of 48 stations
around the world, with varied meteorological conditions and a
wide distribution of geographic locations. Almorox and Hontoria
[14] presented an exponential model that fitted the data
adequately and can be used to estimate monthly mean daily solar
r-
a-
d-
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iation in Spain. Bakirci [15] added an exponential term to the ori-
ginal A–P equation to obtain a linear exponential model. Amp-
ratwum and Dorvlo [16] presented a logarithmic equation which
performed well in an arid region of Oman. Newland [17] revised
the original A–P model and suggested a linear logarithmic equa-
tion. In these modifications, the basic structure of A–P model is
changed from linear to nonlinear form. Although some authors
claimed that their revised models performed better than the origi-
nal A–P model [12,15,17]. It is noted that they are only slightly bet-
ter than the latter. Many comparative studies preferred the simple
A–P model due to its greater simplicity, wider application and very
similar performances to its revised versions [1,10,14,18,19].

Accurate estimation of solar radiation has been being a major
goal for solar energy practitioners, climatologists and all concerned
scientists. Great efforts have been made to model the relationship
between solar radiation and sunshine duration since the pioneer-
ing work of Angstrom [3]. It seems that A–P equation and its re-
vised versions, as well as other empirical models, have far
overreached its predictive limits. Therefore, it is important and ur-
gent to explore new approaches that could produce more accurate
long-term solar radiation data. This is perhaps more critical now
than ever before, because of the more and more concerns on solar
energy utilization and energy conservation, and the increasing
needs of accurate long-term solar radiation data for studying the
global climate change [20]. Recently, a novel machine learning
method, support vector machine (SVM), has been widely applied
in computer, environment and hydrology researches [21–23]. A
number of studies have proved that SVM shows better perfor-
mance than Neural Networks and traditional statistical models
[24–27]. Despite successes in many fields, there is no application
of SVM in estimation of daily solar radiation using sunshine dura-
tion. With respect to the rising popularity of SVM, the main objec-
tives of this study are (1) to examine the feasibility of SVM and
explore its potential in estimation of daily solar radiation using
sunshine duration; and (2) to compare the SVM models with
empirical models.
2. Materials and method

2.1. Study sites and data

Liaoning province with an area of 145.900 km2, situated in the
southern part of the Northeast China, is a leading province in re-
spect of agricultural productivity in China. It is characterized by a
continental monsoon climate, with a hot, rainy summer; and a
short, windy spring. The mean annual temperature is 4–10 �C.
The rainfall is rather concentrated, with a mean annual precipita-
tion of 400–1000 mm. The topography, soils and the climate in
the province are quite favorable to agriculture, and hence the crop
simulations are widely studied [28–30]. However, only 3 meteoro-
logical stations, Chaoyang (41�330N, 120�270E), Dalian (38�540N,
121�380E) and Shengyang (41�440N, 123�310E), are measuring daily
solar radiation, while about 50 stations have records of sunshine
duration. Therefore, solar radiation estimation using sunshine
duration is of vital importance and significance. However, only a
few works have been reported for this area. Chen et al. [31,32] val-
idated the A–P model and the cubic form using daily solar radiation
and sunshine duration data from 1994 to 1998 at Shengyang, the
results showed that the two models returned same Nash–Sutcliffe
equation (NSE). Zhou et al. [33] compared the the A–P model, qua-
dratic and cubic form using long-term daily data sets at Chaoyang,
Dalian and Shengyang, and also reported that the differences be-
tween the errors of the three models were very small. These results
further indicate that the A–P model and its revised versions have
far overreached the predictive limits, and suggest the need to
explore new approaches that could produce more accurate long-
term solar radiation data.

Therefore, the feasibility of SVM and its potential in estimation
of daily solar radiation using sunshine duration are explored for
this area. All the three stations with available daily solar radiation
and sunshine duration are used in this work. For each station, a to-
tal of 35 years (1976–2010) daily sunshine duration and solar radi-
ation data are used. Solar radiation is measured by pyranometer,
and sunshine duration is measured by Jordan sunshine recorder,
all the instruments are calibrated periodically and all the measure-
ments are made following the guide of the World Meteorological
Organization. The data were obtained from the National Meteoro-
logical Information Center, China Meteorological Administration.
Preliminary quality control tests were conducted by the suppliers.
We further checked the data and removed days according to the
following criterions: (a) records with missing data which were re-
placed by 32,766, (b) daily solar radiation larger than the daily ex-
tra-terrestrial solar radiation, (c) daily sunshine duration larger
than daily potential sunshine duration. Subsequently, two data sets
were created for each station. About 70% (1976–2000) of the total
records were used for training SVM models and calibrating the
empirical models, and the remainder (2001–2010) for validation.

2.2. Theory of support vector machine

A brief introduction to the theory of SVM is presented in this
section. More detailed information could be found in Vapnik
[34,35]. The SVM, developed by Vapnik and his coworkers, is a
supervised learning model with associated learning algorithm that
analyzes data and recognizes patterns, widely used in classifica-
tion, regression and forecasting [36–39]. The advantages of the
SVM technique can be summarized as follows. SVM is based on sta-
tistical learning theory and principle of structural risk minimiza-
tion, which attempts to minimize an upper bound of
generalization error rather than minimize the local training error.
This is the most significant difference from the commonly used
principle of empirical risk minimization, which is used by the tra-
ditional learning machine methods [35]. SVM estimates the regres-
sion using a set of kernel functions which are defined in a high
dimensional feature space, the kernel functions implicitly contain
non-linear transformation, no assumptions about the functional
form of the transformation, which makes data linearly separable,
is necessary. SVM delivers a unique solution, since the optimality
problem is convex. This is an advantage compared to Neural Net-
works, which have multiple solutions associated with local minima
[40].

Given a set of data points G ¼ fðxi; diÞgn
i (xi is the input vector, di

is the desired value and n is data size), SVM approximates the func-
tion using the following form:

f ðxÞ ¼ wuðxÞ þ b ð2Þ

where u(x) is the high dimensional feature space which is mapped
from the input space x. w and b are estimated by minimizing the
regularized risk function below [34]:

RSVMsðCÞ ¼ C
1
n

Xn

i¼1

Lðdi; yiÞ þ
1
2
kwk2 ð3Þ

where C 1
n

Pn
i¼1Lðdi; yiÞ is empirical error (risk) and measured by

function Le given below:

Leðd; yÞ ¼
jd� yj � ejd� yjP e

0 otherwise

�

The term 1
2 kwk

2 is the regularization term. C is the penalty
parameter of the error and used to control the trade-off between
the empirical risk and the regularization term. Increasing the value
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of C will result in the relative importance of the empirical risk with
respect to the regularization term to grow. e is called the tube size
and it is equivalent to the approximation accuracy placed on the
training data points.

To obtain the estimations of w and b, Eq. (2) is transformed to
the primal function given by Eq. (3) by introducing the positive
slack variables fi and f�i as follows [35]:

Minimize RSVMsðw; fð�ÞÞ ¼
1
2
kwk2 þ C

Xn

i¼1

ðfi þ f�i Þ ð5Þ
Subjected to
di �wuðxiÞ � bi 6 eþ fi

wuðxiÞ þ bi � di 6 eþ f�i ; f
�
i P 0

Finally, by introducing Lagrange multipliers and exploiting the
optimality constraints, the decision function given by Eq. (1) has
the following explicit form:

f ðx; ai; a�i Þ ¼
Xn

i¼1

ðai � a�i ÞKðx; xiÞ þ b ð7Þ

The term K(xi,xj) is called kernel function, the value of kernel
function K(xi,xj) is equal to the inner product of two vectors xi

and xj in the feature space u(xi) and u(xj), that is, K(xi,xj) = u(xi)*-

u(xj). The elegance of using the kernel function is that one can deal
with feature spaces of arbitrary dimensionality without having to
compute the map u(x) explicitly. Any function satisfying Mercer’s
condition can be used as kernel function.

One of the key tasks in SVM estimation of global solar radiation
is the selection of the input attributes. In this paper, 7 SVM models
(Table 1) using different combinations of actual and potential sun-
shine duration as input attributes are explored. The model (SVM1)
using sunshine ratio is tested firstly, since sunshine ratio is widely
recognized as the most useful variable for solar radiation estima-
tion. SVM4-7 have the same variable expressions to the corre-
sponding exponential, quadratic, linear exponential and cubic
forms of the revised A–P models, therefore, they can be compared
to the corresponding empirical model to assess the superiority of
SVM model. Furthermore, comparison of the 7 SVM models can
propose an optimal SVM model for estimation of daily solar radia-
tion using sunshine duration.

2.3. Implementation of SVM models

The SVM models are implemented by LIBSVM which is an inte-
grated software for support vector classification, regression and
distribution estimation [41]. The procedures include data scaling,
selection of kernel function, cross-validation and training, and test-
ing, more detailed information could be found in Hsu et al. [42].

Data scaling can avoid values in greater ranges dominate those
in smaller ranges and avoid calculation difficulties; it can improve
data fitting and estimation performance, because kernel values
usually depend on the inner products of feature vectors. In this
Table 1
The studied SVM models with different input attributes.

Model Input attributesa

SVM1 S/So
SVM2 S, So
SVM3 S, 1/So
SVM4 Exp(S/So)
SVM5 S/So, S/So2

SVM6 S/So, exp(S/So)
SVM7 S/So, S/So2, S/So3

a S and So are daily sunshine duration and potential
sunshine duration, respectively.
work, both the training and testing data are scaled to the range
[0,1] using the same linearly scaling method before applying SVM.

Four basic kernel functions are provide by SVM, namely, linear,
polynomial, radial basis function and sigmoid. The linear kernel
function is a special case of radial basis function [43]. The polyno-
mial kernel function has more hyperparameters which influence
the complexity of SVM model [42]. The sigmoid kernel function
is not valid under some conditions [34]. Therefore, the radial basis
function K(xi,xj) = exp(�c||xi–xj||2) is a reasonable first choice of
kernel function, where c isthe kernel parameter. Radial basis func-
tion nonlinearly maps the input data into a high dimensional fea-
ture space, so it can handle the nonlinear relation between the
independent and dependent variables. In addition, radial basis
function has less calculation difficulties [44,45].

Two critical parameters, the penalty parameter C and the kernel
parameter c, have significantly effect on the accuracy of SVM mod-
el, and therefore it is important to select the proper values for C
and c. In this work, the optimum ranges of C and c are determined
by grid search [46], and the optimum values of parameters are then
obtained from range using cross validation [42,47], in which the
training data are divide into several subsets with equal size.
Sequentially, each subset is tested using the trained SVM model
on the remaining subsets. Thus, each instance of the whole training
set is estimated once so the cross validation accuracy is the per-
centage of data which are correctly estimated. Finally, after the
optimum values of C and c are found, the final model, which is used
for testing and for estimating the new data, is then trained on the
whole training data set using the selected parameters [42]. Subse-
quently, the final estimating models are used to predict the daily
solar radiation using the testing data, the estimation and the obser-
vation can be compared and the errors can be calculated. The sum-
mary of results of SVM models is presented in Table 4.

2.4. Empirical models

A number of formulas have been developed to estimate solar
radiation using sunshine duration. The first one (A–P model) was
proposed by Angstrom [3], which was further modified by Prescott
[4]. Subsequently, several modified versions of A–P model centered
on improvement in estimation accuracy have been developed. In
this work, five of the models (Table 2), which were previously used
by researchers commonly, are used to estimate daily solar radia-
tion. The empirical parameters of them are calibrated by least
square regression of the dependent (Rs/Ra) on independent vari-
ables to determine the parameters of the model that best describes
the relationship between expected and measured data sets by min-
imizing the sum of the squared residuals.

A common feature of these empirical models is that they ac-
count for latitude, solar declination, elevation, day length and
atmospheric transmissivity by including the extra-terrestrial radi-
ation (Ra) and potential sunshine duration (So) in the model. They
are calculated using the equations detailed by Allen et al. [48].

Ra ¼ 37:6dðx sinu sin dþ cos u cos d sin xÞ ð8Þ

d ¼ 1þ 0:033 cos
2p
365

n
� �

ð9Þ

d ¼ 0:4093 sin
2p
365

n� 1:39
� �

ð10Þ

x ¼ arccosð� tan u tan dÞ ð11Þ

So ¼ 24x=p ð12Þ

where d is the relative distance between the sun and the earth, x is
sunset hour angle (rad), u is latitude (rad), d is solar declination



Table 2
Regression models proposed in literatures.

Models Equationa Parameter Source

Linear Rs = Ra(a1S/So + b) a1, b [3] and [4]
Quadratic Rs = Ra(a1S/So + a2S/So2 + b) a1, a2, b [12]
Cubic Rs = Ra(a1S/So + a2S/So2 + a3 S/So3 + b) a1, a2, a3, b [13]
Exponential Rs = Ra(a4exp(S/So) + b) a4, b [14]
Linear exponential Rs = Ra(a1S/So + a4exp(S/So) + b) a1, a4, b [15]

a Rs, Ra, S and So are daily solar radiation, extra-terrestrial solar radiation, sunshine duration and potential sunshine duration, respectively.
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angle (rad), n is the number of the day of year starting from the first
of January.

2.5. Performance criteria

Root mean square error (RMSE), relative root mean square error
(RRMSE) (%) and coefficient of determination (R2) are used to as-
sess the performance of models. R2 is commonly calculated based
on the calibration dataset, RMSE and RRMSE based on the valida-
tion dataset. The metric R2 varying between 0 and 1 is adopted
to measure the fit of model, higher the value, better the fit. While
the lower the values of RMSE, and RRMSE, the better is the model’s
performance. RMSE and RRMSE are calculated by the following
equations.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � ŷiÞ2

n

s
ð13Þ

RRMSE ¼ 100

y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � ŷiÞ2

n

s
ð14Þ

where n, y, ŷ and y
�

represent the number of testing data, the ob-
served value, the estimated value and the average value of the
observation, respectively.

3. Results

3.1. Performances of empirical models

The locally calibrated parameters and performances of the
empirical models are presented in Table 3. All the models perform
well with RMSE < 2.8 MJ m�2 (average 2.323 MJ m�2), RRMSE <
20% (average 17.31%) and R2 > 0.6 (average 0.759). The linear, lin-
ear exponential, quadratic and cubic models give very similar
Table 3
Calibrated parameters and statistical indicators (RMSE in MJ m�2, RRMSE and R2) of the studied empirical models.

Station Model b a1 a2 a3 a4 R2 RMSE RRMSE (%)

Chaoyang Linear 0.206 0.510 0.810 2.652 19.42
Exponential �0.059 0.301 0.751 2.729 19.95
Linear exponential 0.297 0.677 �0.101 0.812 2.658 19.47
Quadratic 0.194 0.598 �0.091 0.812 2.658 19.47
Cubic 0.185 0.843 �0.771 0.476 0.814 2.646 19.44

Dalian Linear 0.143 0.522 0.673 1.994 14.91
Exponential �0.132 0.308 0.632 2.101 15.70
Linear exponential 0.173 0.577 �0.033 0.673 1.992 14.90
Quadratic 0.139 0.556 �0.036 0.673 1.991 14.89
Cubic 0.130 0.801 �0.712 0.468 0.681 1.975 14.77

Shengyang Linear 0.165 0.550 0.820 2.281 17.27
Exponential �0.138 0.335 0.774 2.374 17.97
Linear exponential 0.235 0.672 �0.076 0.821 2.271 17.20
Quadratic 0.158 0.612 �0.068 0.821 2.269 17.18
Cubic 0.151 0.795 �0.601 0.388 0.822 2.249 17.03
RMSE, RRMSE and R2 at each station. The exponential model
returns the highest RMSE (average 2.401 MJ m�2), RRMSE (average
19.95%) and lowest R2 (average 0.718).

Among the modified versions of A–P model, the exponential
form returns relatively higher RRMSE, RRMSE and lower R2 when
compared to the others, indicating less suitable for the present
sites. The poor performance was also reported by others
[14,15,19,49]. Generally, for empirical modes such as those pre-
sented here, the more parameter a model has, the higher chance
the model gives a better performance. However, in the present
work, the linear exponential, quadratic and cubic models give very
similar results to the linear A–P model. The largest differences be-
tween the RMSE, and R2 of the best and A–P model are only
0.006 MJ m�2, and 0.004 for Chaoyang, 0.032 MJ m�2, and 0.002
for Shengyang, 0.019 MJ m�2, and 0.008 for Dalian, respectively.
Our results are consistent with those reported by Chen et al.
[31,32] who reported that the A–P model and cubic form returned
same NSE, and by Zhou et al. [33] who found the differences be-
tween the errors of A–P model, quadratic and cubic form were very
small at Chaoyang, Dalian and Shengyang. Many comparative stud-
ies also reported similar results [1,10,14,49], for example, Yorukoglu
and Celik [19] found the quadratic and cubic models returned sim-
ilar values of R2 and RMSE to those of the linear model. The cubic
model performed even worst at 159 stations in Turkey [49]. Only
a few works presented better performances of the revised A–P mod-
els, for example, Bakirci [15] compared the A–P model and its re-
vised forms for provinces in different regions of Turkey and found
the the linear exponential gave generally the best results.

Given the slightly differences between the variance explained
by A–P model and its modified versions, the original A–P model
is always preferred due to its greater simplicity and wider applica-
tions [1,10,14,18,19]. The reason for lack of significant improve-
ment has not been widely discussed. We believe that one
possible reason may be due to the highly significant correlations
of different terms. For example, S/So correlates significantly with



Table 4
performance of the SVM models (RMSE in MJ m�2).

Model Chaoyang Dalian Shengyang

RMSE RRMSE (%) RMSE RRMSE (%) RMSE RRMSE (%)

SVM1 2.302 16.86 1.801 13.47 2.003 15.16
SVM2 2.378 17.42 2.199 16.44 2.126 16.10
SVM3 2.380 17.43 2.196 16.42 2.140 16.20
SVM4 2.307 16.90 1.808 13.52 2.009 15.21
SVM5 2.304 16.88 1.812 13.55 2.005 15.18
SVM6 2.305 16.88 1.802 13.47 2.007 15.20
SVM7 2.302 16.87 1.789 13.37 1.989 15.06
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S/So2 at Chaoyang (r = 0.969, p < 0.001), Dalian (r = 0.971,
p < 0.001) and Shengyang (r = 0.967, p < 0.001).

3.2. Performances of SVM models

Table 4 displays the performances of the SVM models. Overall,
all the SVM models give good performances with RMSE <
2.4 MJ m�2 (average 2.094 MJ m�2) and RRMSE < 18% (average
15.6%), indicating that SVM shows good generalization. SVM1, 4-
7 which include sunshine ratio in input attribute perform better
than SVM2-3 with an average 9% lower RMSE, suggesting that
the sunshine ratio is also an important variable for solar radiation
estimation using SVM. Whereas SVM1, 4-7 give very similar per-
formances at each station, mean values of RMSE are 2.035, 2.041,
2.039, 2.038 and 2.027 MJ m�2, respectively; mean values of
RRMSE are 15.16%, 15.21%, 15.2%, 15.18% and 15.1%, respectively.
The largest differences between RMSE of the best and the worst
are only 0.005 MJ m�2 for Chaoyang, 0.02 MJ m�2 for Shengyang,
and 0.024 MJ m�2 for Dalian. SVM5-7 have more input parameters
than SVM1, which are generally expected to give better results.
While the similar performances of them indicate that more input
parameters do not adequately contribute to the improvement in
estimation accuracy. The reason for lack of improvement may be
attributed to the significant correlations of different attributes,
which is similar to the reason for lack of improvement of the re-
vised A–P models. Therefore, SVM1 is proposed due to its accuracy
and the simple input attribute.

3.3. Comparison of SVM between empirical models

To demonstrate the superiority of SVM, comparison of SVM
models between empirical models is made. Overall, SVM models
produce an average RMSE of 2.094 MJ m�2 which is 10% lower than
that of 2.323 MJ m�2 produced by empirical models, suggesting
that SVM outperforms the empirical models. The improvements
of SVM differ at different sites, at Chaoyang SVM models produce
an average RMSE of 2.325 MJ m�2 which is 12.9% lower than that
of 2.668 MJ m�2 produced by empirical models, while the average
RMSE of SVM are 10.8% and 7.7% lower than those of empirical
models at Shenyang and Dalian., respectively. The improvements
of SVM also differ from model to model. The best improvements
are obtained by SVM4 which shows 15.4%, 13.9% and 15.1% lower
RMSE than the exponential model at Chaoyang, Dalian and Shengy-
ang, respectively. SVM1 also makes better improvements with
13.2%, 9.7% and 12.2% lower RMSE than the widely used A–P model
at Chaoyang, Dalian and Shengyang, respectively. While similar
improvements are observed for SVM5-7 which produce an average
RMSE of 2.04, 2.038, and 2.027 MJ m�2, corresponding to 11.5%,
11.7%, and 11.4% lower than 2.306, 2.307, and 2.29 MJ m�2 pro-
duced by quadratic, linear exponential, and cubic models, respec-
tively. These results further confirm the superiority of SVM over
the empirical models. The remarkable improvement indicates that
the SVM method would be a promising alternative over the tradi-
tional approaches for estimation of daily solar radiation using sun-
shine duration.

3.4. Performances of SVM1 with season-dependent data sets

As SVM1 is preferred to other SVM models, the following anal-
ysis will be limited to the results of SVM1. Further investigation is
carried out to investigate the effect of the training timescale on the
results of the estimation. The original training data sets were di-
vided into 4 groups corresponding to four seasons: spring (March,
April and May), summer (June, July and August), autumn (Septem-
ber, October and November) and winter (December, January and
February). The seasonal data sets for validation were created in
the same way. Subsequently, the seasonal data sets were used
for training SVM1 (hereafter season-dependent model). The sea-
sonal validation data sets were used for testing the corresponding
season-dependent model and the SVM model (hereafter fixed
model) trained on the data sets of all seasons. The results are pre-
sented in Fig. 1.

Obviously, both season-dependent and fixed models perform
differently in different seasons. In terms of RMSE, they perform
better in winter at each station. The highest RMSE and RRMSE
are obtained in summer, which may be attributed to the large daily
fluctuation of the weather variables, since this season also corre-
sponds to the rainy season in Liaoning province.

The season-dependent model provides better results than the
fixed model in winter, with 11.6%, 10.5% and 10.9% lower RMSE
for Chaoyang, Dalian and Shengyang, respectively. While they give
similar results in other seasons. Mean values of RRMSE obtained by
fixed model are 13.83%, 16.01% and 13.33% for spring, summer and
autumn, respectively. Which are very similar to the corresponding
values of 13.89%, 15.91% and 13.34% by the seasonal-dependent
model. It is interesting that at Shengyang the fixed model even ob-
tains slightly better results for spring and summer. Similar results
are also found in autumn for Dalian and in summer for Chaoyang.
These results indicate that the time-dependent SVM model has no
advantage over the fixed model for estimation of daily solar radia-
tion in spring, summer and autumn, In other words, consideration
of seasonal variation of the training data sets cannot improve the
model performance, and thus unnecessary.

The season-dependent characteristic of empirical models, in
particular the A–P model, is also widely discussed. A few studies
reported the advantage of the season-dependent models. Podestá
et al. [8] suggested that the seasonal parameters seemed to be re-
quired to avoid systematic temporal patterns in estimation residu-
als in the Argentine Pampas. Tymvios et al. [50] stresses the
significance of seasonality as an important factor in estimating so-
lar radiation in Athalassa. While there are many others presented
different conclusions. Iziomon and Mayer [18] found that the
parameters of the A–P model did not show any particular trend
with respect to season at Bremgarten and Feldberg in south-west
Germany. Almorox and Hontoria [14] reported that seasonal parti-
tioning did not significantly improve the estimation. Recent studies
of Liu et al. [51] and Liu et al. [52] explicitly demonstrated that
consideration of the season-dependent characteristics of the A–P
model had little predictive value and thus unnecessary. This is
partly consistent with the result of time-dependent SVM model
which gives similar performance to the fixed model in spring, sum-
mer and autumn.

3.5. Analysis of interchangeability for SVM1 of different stations

In the case of unavailable daily solar radiation data for a site, the
predictability of SVM1 is further investigated, and the results are
presented in Fig. 2. As it can be seen, good agreement has been ob-
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served between estimated and measured values, as points tend to
line up around the 1:1 line. These results illustrate a good reliabil-
ity of SVM1 in estimating daily solar radiation using the training
data sets from other stations.

At Chaoyang (Fig. 2f) and Dalian (Fig. 2d) SVM1 using the data
from Shengyang gives good results with the RRMSE of 17.64%
and 13.56%, respectively. Which are similar to the corresponding
values of 16.86% and 13.47% derived by their own data (Table 4).
Similar results are also found when the data from Chaoyang are ap-
plied to Dalian (Fig. 2c). It is interesting that at Shengyang (Fig. 2a)
SVM1 using the data from Chaoyang provides slightly better re-
sults than using its own data (Table 4). At Chaoyang (Fig. 2e) and
Shengyang (Fig. 2b) SVM1 using the data from Dalian return rela-
tively higher RMSE and RRMSE, but reasonable results. These re-
sults indicate that daily solar radiation could be well estimated
by SVM1 using the data from other stations although the distances
between stations are up to 340 km. This would be of significance
because all area of the province is covered by the 3 meteorological
stations.

It is an alternative to substitute solar radiation by those from
nearby stations [2,9,53]. It was proposed by Allen et al. [48] as a
possible way of replacing missing data when calculating the daily
evapotranspiration. The precision of this method decreases with
the increase in distance between the two stations. Hunt et al. [2]
reported that the RMSE between replacement and measured val-
ues increased with increase in distance in a curvilinear manner.
The study of Trnka et al. [9] also presented same conclusion. In
our study, when the training data from other stations are applied
to Shengyang, RMSE obtained by SVM1 increases from
1.988 MJ m�2 (Fig. 2a) to 2.237 MJ m�2 (Fig. 2b) with increase in
distance from 301 km (between Shengyang and Chaoyang) to
340 km (between Shengyang and Dalian). At Dalian using the data
form Chaoyang gives the RMSE of 1.873 MJ m�2 (Fig. 2c), which is
similar to 1.814 MJ m�2 (Fig. 2d) obtained using the data from
Shengyang although the distance increases from 285 km (between
Dalian and Chaoyang) to 340 km. While RMSE obtained at Chaoy-
ang decreases from 2.64 MJ m�2 (Fig. 2e) to 2.408 MJ m�2 (Fig. 2f)
as increase in distance from 285 km to 301 km. It seems that RMSE
shows no generic trend with the distance between stations provid-
ing data and the stations for which the data are used for SVM1 to
estimate daily solar radiation. Admittedly, as the solar radiation
data are spatially very sparse in the study area, and the range of
distances between stations is narrow, it is difficult to plot the pre-
cision vs. distance relationship. Further study will focus on the reli-
ability of SVM models to estimate solar radiation on large spatial
scales with denser network of solar radiation observations, and re-
veal the precision vs. distance relationship.
4. Conclusions

This work presents the application of SVM to estimating daily
solar radiation using sunshine duration. Seven SVM models using
different input attributes and five empirical sunshine-based mod-
els are evaluated. SVM shows good generalization, and all the
SVM models give good performances. The developed SVM models
outperform the empirical models. SVM1 using sunshine ratio as in-
put attribute is preferred due to its greater accuracy and simple in-
put attribute. It performs better in winter, while highest RMSE and
RRMSE are obtained in summer. The season-dependent SVM model
is superior to the fixed one in estimation of daily solar radiation in
winter, while consideration of seasonal variation of the data sets
cannot improve the results in spring, summer and autumn. In the
case of unavailable data for constructing SVM model, the daily so-
lar radiation could be well estimated by SVM1 using the data from
nearby stations although the distances are up to 340 km, so that all
area of the province is covered by the existing meteorological
stations.

Besides the sunshine duration, air temperature, relative humid-
ity, precipitation and atmospheric pressure are also routinely
measured at most meteorological stations. Many works have
shown that these meteorological variables in combination with
the sunshine duration can significantly improve the accuracy of
the A–P model [31,54,55]. Lam et al. [56] investigated the Neural
Networks for estimating solar radiation using sunshine duration
in combination with air temperature and geographical variables,
the RMSE is 1.73 MJ m�2 and RRMSE is 13.4% for Chaoyang. Apart
from the effect of period of data sets, Neural Network even gives
better performance than SVM model in this work, this indicates
sunshine duration in combination with other routinely measured
meteorological variables can also improve the accuracy of machine
learning method. Therefore, future works will investigate the per-
formance of SVM with more available meteorological variables and
propose the optimal input attributes.
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