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Abstract: How well parameterization will improve gross primary production (GPP) 

estimation using the MODerate-resolution Imaging Spectroradiometer (MODIS) algorithm 

has been rarely investigated. We adjusted the parameters in the algorithm for 21 selected 

eddy-covariance flux towers which represented nine typical plant functional types (PFTs). 

We then compared these estimates of the MOD17A2 product, by the MODIS algorithm 

with default parameters in the Biome Property Look-Up Table, and by a two-leaf Farquhar 

model. The results indicate that optimizing the maximum light use efficiency (εmax) in the 

algorithm would improve GPP estimation, especially for deciduous vegetation, though it 

could not compensate the underestimation during summer caused by the one-leaf upscaling 

strategy. Adding the soil water factor to the algorithm would not significantly affect 

performance, but it could make the adjusted εmax more robust for sites with the same PFT and 

among different PFTs. Even with adjusted parameters, both one-leaf and two-leaf models 

would not capture seasonally photosynthetic dynamics, thereby we suggest that further 

improvement in GPP estimaiton is required by taking into consideration seasonal variations 

of the key parameters and variables. 
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1. Introduction 

Gross primary production (GPP), which is the amount of light energy from the sun converted to 

chemical energy, determines the thermal, water and biogeochemical cycles in terrestrial ecosystems. 

However, even when eddy covariance (EC) flux data and remote sensing data are conjunctively 

introduced into various diagnostic models, uncertainties in modeled GPP are still vast. Current 

estimates of global GPP range between 102 and 165 petagrams of carbon per year, where uncertainties 

are likely from errors of input data, poor parameterization and model structure [1–6]. Among the 

methods of reducing uncertainties in GPP simulation, parameter adjustment and structural 

modification are adopted, and the former method could compensate for the errors introduced by a 

model structure [2,7,8]. 

Many concepts were developed to simulate carbon assimilation [9–11]. One of the widely accepted 

approaches is the light use efficiency model because of both its simple structure—which assumes that 

a fraction of the photosynthetically active radiation (PAR) absorbed by the vegetation canopy is used 

for plant primary production [9]—and its large amount of available input data, including EC 

measurements [12–15] and remotely sensed data [16–18]. One application of this kind of model is the 

MODIS GPP algorithm [19]. Its latest product MOD17A2 Collection 5 (https://lpdaac.usgs.gov/products)  

is forced by the National Center for Environmental Prediction–Department of Energy (NCEP-DOE) 

reanalysis II data and the default parameters are derived from the Biome Property Look-Up Table 

(BPLUT) [20]. 

Based on the algorithm and its product, many evaluations have been made. Early studies focused on 

uncertainties introduced by input data [5,16,21] and simulations using different input data [17,22,23]. 

A direct comparison between the NCEP-DOC reanalysis II data and EC tower measurements at 12 

African sites suggested that these two forcing data with different spatial resolutions were comparable 

in air temperature and atmospheric vapor pressure deficit (VPD), but the relationship was scattered in 

incoming PAR [14]. Recently, many studies paid attention to structural errors of the MODIS GPP 

algorithm. Zhang et al. [24] compared the MODIS GPP product with the estimates using a process-based 

ecosystem model (Boreal Ecosystem Productivity Simulator). They noted that the MODIS GPP 

algorithm cannot properly treat the contribution of shaded leaves to canopy-level GPP. He et al. [13,15] 

developed a two-leaf light use efficiency model for improving the calculation of GPP and validated its 

application in six ecosystems. Previously, the two-leaf upscaling strategy had been well documented in 

the Farquhar model, as compared with the one-leaf strategy [25,26]. Aside from model restructure, 

adjusting biome parameters is another way to improve simulation. Evaluations of MODIS GPP using 

EC data indicated that adjusting the maximum light use efficiency (εmax), which was derived from the 

BPLUT [19,20], in the algorithm might be needed to better estimate GPP in both Africa [14] and 

northern China [27]. As a key parameter in the algorithm, εmax was further affected by the scales of 

daily minimum temperature (TMIN) and VPD [19]. However, the TMIN function was observed not to 
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constrain MOD17A2 GPP much [8,14] and both functions could be corrected using flux tower 

measurements [8]. Moreover, some studies noted that optimizing the algorithm using the soil water 

content can improve agreement with the measurements [28], but only in dry regions [14,29,30] or 

throughout the growing season [16].  

As mentioned above, both adjusting the key parameters and modifying the model structure can 

improve GPP estimation using the MODIS algorithm, and the former can compensate for errors 

introduced by the latter [2,7,8]. Therefore, the best approach for improving the algorithm is open to 

debate, and benefits of parameter adjustment are needed to be validated for multiple biome types 

across different time scales and over relatively long time periods. Furthermore, less attention has been 

given to the effects of adopting different methods of parameter adjustment, such as using model–data 

fusion [31] and adding control factors [2]. These issues must be clarified and resolved to reduce 

uncertainties in GPP estimates on regional and global scales. 

We hypothesize that adjusting key parameter can improve estimates and can compensate for 

structural errors caused by adopting the one-leaf strategy in the MODIS GPP algorithm. The objective 

of this study is to evaluate capacity of parameter adjustment in the algorithm to improve estimates for 

multiple plant functional types. We used EC measurements to optimize key parameters in the 

algorithm. The selected EC towers represented nine plant functional types across six biomes in two 

main climate zones. Then we compared the adjusted models with the MOD17A2, the algorithm with 

default parameters, and a two-leaf Farquhar model across half hourly, daily, monthly and seasonal 

time scales. The Farquhar model is a default component of the Dynamic Land Model (DLM) [32,33]. 

By using an existing dataset, this research proves a solid foundation for evaluating the MODIS 

algorithm’s ability to estimate GPP across multiple plant functional types and a range of time scales. 

2. Materials and Methods  

2.1. Data 

2.1.1. Eddy-Covariance Data 

We used the FLUXNET database (http://fluxnet.ornl.gov/) to calibrate the models and to validate 

GPP estimates. The dataset contains annual files of half-hourly meteorological and flux data from 

more than 400 EC sites across Europe (CarboEurope), America (AmeriFlux and Fluxnet-Canada), and 

Asia (AisaFlux and ChinaFLUX), etc. To reduce potential errors derived from the observations, we 

selected the EC towers according to the following criteria: (1) the site provides four or more years of 

continuous data as a part of the publicly accessible standardized Level 4 or 3 database; (2) a ―site-year‖ 

is accepted for analysis if more than 90% of the half hours in a year contain non-missing values for the 

meteorological data (downwelling solar radiation, precipitation, wind speed, air temperature and 

relative humidity), the carbon flux data (net ecosystem exchange and ecosystem respiration (Reco)), and 

the energy fluxes (net radiation (Rn), ground heat flux (G), latent heat flux (LE) and sensible heat 

flux (H)); and (3) energy balance closure is evaluated for each site-year according to the ratio of the 

dependent flux variables (H + LE) against the independently derived available energy (Rn − G) for each 

half hour [34]. The values of the half-hourly energy balance closure ratio (H + LE)/(Rn − G) deviate 

from the ideal closure (a value of 1) because random error exists, and the magnitude of the CO2 uptake 
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is less when the energy imbalance is greater [34,35]. Thus we recorded the number of daytime half 

hours of which the ratio was in the range of 0.6–1.4, and then accepted a ―site-year‖ when the 

accumulated number was greater than 60% of the total number of daytime half hours during the 

growing season. Uncertainties in the EC-measured GPP still exist because of the underestimation of 

Reco at night, gap filling algorithm uncertainty, partitioning uncertainty, random uncertainty, and 

threshold friction velocity uncertainty [36]. We considered the supplied GPP as the ―ground truth‖ [18] 

in this study. 

Finally, 102 site-years, which represent six biome types across two main climatic environment 

zones (i.e., plant functional types, PFTs) [37] at 21 EC sites [38–64], were selected (Table 1). Seven of 

these sites are in boreal regions, and fourteen sites are in temperate regions. Five sites that have 

Mediterranean climates were characterized as being in the temperate zone because of the absence of 

Mediterranean forest in the PFTs we used [37]. Though the three sites, CA-Ca1, CA-Ca2 and CA-Ca3, 

were located in adjacent areas, their planting years were 1949, 2000 and 1988, respectively, indicating 

different tree ages. This is a similar case with CA-Ojp and CA-Obs; their planting years were 1929 and 

1879, respectively. We used two years of each site for model calibration, and another two consecutive 

years for validation. 

2.1.2. MODIS 8-Day Average GPP Product 

The MODIS GPP product MOD17A2 Collection 5 was designed to provide an 8-day average 

measure of the global terrestrial vegetation using MODIS land cover, vegetation product and surface 

meteorology at 1 km resolution [20,65]. We used mean values of the 3-by-3 pixels, with the center 

pixel containing the tower location (Table 1). Because the footprint radius of most annual cumulative 

climatology data ranged from 0.70 to 1.5 km [66], the 3-by-3 pixel area is expected to represent the 

flux tower footprint well [18,67,68].  

2.2. Model Description 

2.2.1. MODIS GPP Algorithm 

MOD17A2 is calculated using a light use efficiency model with the one-leaf upscaling strategy 

based on the radiation conversion efficiency concept of Monteith [9] as follows [19,20,69]: 

      ε                                   
 

(1) 

where PAR is the incident photosynthetically active radiation—its value is assumed to be 45% of the 

incident shortwave radiation [19]; εmax is the maximum light use efficiency, which depends on the 

plant functional types; f(VPD) and f(Tair) are the scalars of vapor pressure deficit and air temperature, 

respectively, both of which are ranged from 0 to 1 to downscale the maximum light use efficiency of 

the canopy to the actual value. The scales were calculated as follows [8,13,15]: 

         
          

             
 (2) 

          
            

                
(3) 
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where VPDmax and TMINmin are daily maximum VPD and daily minimum temperature at which the light 

use efficiency equals 0, and VPDmin and TMINmax are daily minimum VPD and daily minimum 

temperature at which the light use efficiency is maximum. We replaced the daily minimum 

temperature in the temperature function [8,13,15] by EC-observed half-hourly temperature (Tair) to 

calculate GPP on half-hourly time scale. fPAR is the fraction of PAR being absorbed by the canopy, 

which was estimated using the Beer’s law [21,70] as follows: 

                 (4) 

where k is the light extinction coefficient, which is set to 0.5 [15,70,71], and LAI is the green area index. 

The soil moisture scalar (βt) is another factor that impacts the light use efficiency of 

vegetation [16,17,29,30,72]. We added this factor to Equation (1) in another simulation as follows [37]: 

         

  

     

 (5) 

where wi is the plant-wilting factor for soil layer i, and ri is the fraction of roots in soil layer i. The soil 

profile is divided into fifteen layers, for which the depth of the layer increases exponentially with the 

soil layer number [37]. The factor was calculated using DLM, because the soil moisture measurements 

were not provided by all site-years we selected and the values were simulated well by DLM [33]. More 

details can be found in the Appendix and Oleson et al. [37] 

2.2.2. Farquhar Model 

The total canopy photosynthesis (A) in the two-leaf Farquhar model was calculated for sunlit and 

shaded parts by adopting sunlit and shaded leaf area indices (LAIsun and LAIsha) separately, following [73]: 

                            (6) 

The net CO2 assimilation rate at leaf level was expressed as follows [37,73]: 

    min                      (7) 

where     ,     ,      and      are the Rubisco-limited rate, the light-limited rate, the export-limited 

rate and leaf dark respiration of sunlit or shaded leaf (i = 1 or 2), respectively. The Rubisco-limited 

rate was controlled by the soil water factor (Equation (A3)). Details can be found in Appendix. 

2.3. Model Simulation 

2.3.1. Forcing Data 

Off-line single point simulations with a 30 min time step were performed using observed 

meteorological data and land-surface data. Half-hourly meteorological data, including downwelling 

solar radiation (in W∙m
−2

), precipitation (in mm), wind speed (in m∙s
−1

), air temperature (in K), and 

relative humidity (in %), were measured at the EC towers. For these key model inputs, missing half-hourly 

values, which were due to periods of instrument failure, were gap-filled by linear interpolation for gaps 

of less than 2 hours. Larger gaps were filled by applying a simple interpolation technique of mean 

diurnal variation [74,75].  
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Table 1. Descriptions of the study sites. 

Number Site ID a Latitude Longitude Elevation Biome Type b Climate Zone Site-Years Precipitation LAImax References 

  (°N) (°E) (m)    (mm∙yr−1) (m2∙m−2)  

1 CA-Ca1 49.867 −125.334 313 NEF Temperate 2001–08(06) c 1456 7.3 

Chen et al. 

(2011), 

Krishnan et al. 

(2009) [38,39] 

2 CA-Ca2 49.871 −125.291 170 NEF Temperate 2007–10(08) 619 2.7 
Grant et al. 

(2010) [40] 

3 CA-Ca3 49.535 −124.900 153 NEF Temperate 2003–07(05) 1683 7.0 
Grant et al. 

(2010) [40] 

4 DE-Tha 50.964 13.567 380 NEF Temperate 2001–05(01) 804 7.6 

Grünwald and 

Bernhofer 

(2007) [41] 

5 ES-ES1 39.346 −0.319 1 NEF Mediterranean 2004–07(05) 414 2.6 
Blyth et al. 

(2010) [42] 

6 US-Ho1 45.204 −68.740 72 NEF Temperate 
1996–98, 

2003–04(03) 
951 5.7 

Hollinger et al. 

(2004) [43] 

7 CN-Qia 26.741 115.058 86 NEF Temperate 
2003–04, 

2006–07(04) 
1325 4.7 

Li et al. (2007) 

[44] 

8 CA-Ojp 53.916 −104.692 518 NEF Boreal 2007–10(08) 418 2.0 

Bergeron et al. 

(2007), Kljun  

et al. (2006) 

[45,46] 

9 CA-Obs 53.987 −105.118 598 NEF Boreal 2001–05(01) 408 3.4 

Gaumont-Guay 

et al. (2014) 

[47] 

10 CA-NS1 55.879 −98.484 253 NDF Boreal 2002–06(03) 213 3.0c 
Hill et al. 

(2011) [48] 

11 FI-Hyy 61.847 24.295 185 NDF Boreal 2005–08(06) 500 6.7 
Tanja et al. 

(2003) [49] 

12 FR-Pue 43.741 3.596 270 BEF Mediterranean 2004–09(08) 1116 2.9 
Rambal et al. 

(2003) [50] 

13 IT-Cpz 41.705 12.376 9 BEF Mediterranean 2006–09(07) 593 3.5 

Garbulsky  

et al .(2008), 

Reichstein et al. 

(2007) [51,52] 

14 IT-Col 41.849 13.588 1645 BDF Mediterranean 2004–07(05) 954 6.4 
Valentini et al. 

(1996) [53] 

15 US-MOz 38.744 −92.200 212 BDF Mediterranean 2004–08(05) 1023 4.0 
Gu et al. (2006) 

[54] 

16 CA-Oas 53.629 −106.198 580 BDF Boreal 2001–05(03) 261 2.6 

Barr et al. 

(2007), 

Krishnan et al. 

(2006) [55,56] 
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Table 1. Cont. 

Number Site ID a Latitude Longitude Elevation Biome Type b Climate Zone Site-Years Precipitation LAImax References 

  (°N) (°E) (m)    (mm∙yr−1) (m2∙m−2)  

17 DK-Sor 55.487 11.646 40 BDF Boreal 
2003–05, 

2008–09(04) 
631 5.0 

Pilegaard et al. 

(2003) [57] 

18 CA-Mer 45.409 −75.519 65 BDS Temperate 2004–07(06) 1203 1.2 

Lafleur et al. 

(2003), Roulet 

et al. (2007) 

[58,59] 

19 CA-NS6 55.917 −98.964 271 BDS Boreal 2002–06(02) 267 3.0 d 

Goulden et al. 

(2006), 

McMillan et al. 

(2008) [60,61] 

20 AT-Neu 47.116 11.320 970 GRA Temperate 2002–07(03) 764 6.5 
Wohlfahrt et al. 

(2008) [62] 

21 IE-Dri 51.987 −8.752 187 GRA Temperate 2002–06(04) 1341 5.2 c 

Montaldo et al. 

(2007), Peichl 

et al. (2010) 

[63,64] 

Note: a The site ID is taken from FLUXNET. b Biome types: needleleaf evergreen forest (NEF), needleleaf deciduous forest (NDF), 

broadleaf evergreen forest (BEF), broadleaf deciduous forest (BDF), broadleaf deciduous shrub (BDS), and grassland (GRA). c The 

selected years of each site. The number in parentheses is the representative year for analyzing. d Data were extracted from a global LAI 

map based on 10-day synthesis VEGETATION images at 1-km spatial resolution [4,76,77]. 

Monthly LAI values for each site were extracted from a global LAI map based on 10-day synthesis 

VEGETATION images with 1 km spatial resolution taken in 2003. The values had been corrected 

based on a global clumping index map produced from the multi-angle observation of the POLDER 1, 2 

and 3 sensors [4,76,77]. We further corrected monthly LAI for each site using the ratio of the LAImax 

value (Table 1) against the extracted LAI value within the same month, in which LAImax was supplied 

by the biological information for each site.  

Each site for the offline simulations using DLM were initialized by spinning-up for 200 years with 

repeat years using 1982–2001 atmospheric forcing dataset from the National Centers for 

Environmental Prediction reanalysis dataset [78] provided by National Center for Atmospheric 

Research. Although the years for which available supplementary land-surface data are available do not 

always correspond to the years being modeled, we assumed that the data are adequate for our 

photosynthesis modeling. We only utilized the biogeophysical module in DLM, thus the estimation 

was unaffected by biogeochemical (e.g., carbon–nitrogen coupling) uncertainties [2,79]. 

2.3.2. Parameter Selection and Optimization 

We optimized some key biome-dependent parameters regarding carbon assimilation in the LUE, the 

LUE-SW and the Farquhar simulations. Adopting the parameter optimization algorithm by  

Chen et al. [38], we first identified which parameters are most sensitive to photosynthesis by randomly 

sampling parameters within their possible ranges and analyzing the response. The maximum light use 

efficiency and the leaf maximum carboxylation rate at 25 °C constrained by leaf nitrogen, which are 
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significantly sensitive in the MODIS GPP algorithm and the Farquhar model, respectively, were 

selected to be optimized. Then, we applied the ensemble Kalman filter data-model synthesis approach, 

which encompasses both model parameter optimization and data assimilation, to optimize these 

parameters by minimizing the difference between observations and predications [80]. These selected 

parameters were optimized at the site level to reduce errors introduced by plant functional type 

classification [81]. To minimize VPD and temperature errors in the MODIS GPP algorithm 

(Equation (1)), we calculated VPDmax and VPDmin in Equation (2) and TMINmax and TMINmin in 

Equation (3) for each site following Kanniah et al. [8]. 

2.3.3. Experiment 

We performed the following two simulations to document different methods of parameter 

adjustment applied to the MODIS GPP algorithm: 

LUE: A simulation with the MODIS GPP algorithm (Equaiton (1)) and optimized biome-parameters 

using EC measurements; 

LUE-SW: Addition of the soil water scale (Equation (5)) to the MODIS GPP algorithm. The 

parameters were optimized after the addition. 

These two performances were evaluated using the MOD17A2 and the following two simulations 

forced by meteorological measurements: 

LUEdef: A simulation with the MODIS GPP algorithm and the default biome-parameters supplied 

by BPLUT [20], which is aimed at testing default parameters forced by EC data; 

Farquhar: A simulation with the two-leaf Farquhar model (Equations (6) and (7)) to investigate 

structural error introduced by the one-leaf upscaling strategy and to validate compensation of 

parameter adjustment to the MODIS algorithm. 

2.4. Model Performance 

We quantified the model performance using statistical analysis based on the half-hourly GPP for 

each model–data pair. Model–data mismatch was evaluated using the bias, and the root-mean-square 

error (RMSE) [82–84], which are defined as follows: 

Bias         

 

   

   (8) 

      
 

 
         
 

   

   
 

(9) 

where Pi and Oi denote the predicated and observed values, respectively, and    is the mean value of 

the observed data. 

A final characterization of model performance uses the Taylor diagram [85], in which a single point 

indicates the linear correlation coefficient (R) and the ratio of the standard deviations of the prediction 

and the observation  σnorm = σp/σo), along with the root-mean-square (RMS) difference of the two 

patterns on a two dimensional plot. An ideal model has a standard deviation ratio of 1.0 and a correlation 

coefficient of 1.0, i.e., the reference point on the x-axis. The Taylor skill (S) is a single-value summary 
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of a Taylor diagram, where unity indicates perfect agreement with observations. More generally, each 

point for any arbitrary data group [85,86] can be scored as 

                           (10) 

3. Results 

3.1. Model Parameters Variation 

We optimized the key parameters of the LUE, LUE-SW and the Farquhar model (Table 2). For the 

selected 21 sites, the values of εmax ranged from 0.53 to 1.72 gC∙MJ
−1

 in LUE. The highest εmax was 

exhibited in the boreal forest of deciduous broadleaf species. Considering the limitation of soil 

moisture, the optimized εmax in LUE-SW increased by 0.08 gC∙MJ
−1

 on average. However, the 

statistical differences between the optimized parameters in each simulation (LUE or LUE-SW) and the 

default values (LUEdef) were not significant (p > 0.0   according to the Fisher’s least significant 

difference test. The two-leaf Farquhar model calculated photosynthesis of sunlit and shaded leaves 

separately, but used the same values of the leaf maximum carboxylation rate at 25°C constrained by 

leaf nitrogen for both leaves (Equation (A3)). The average parameter was 37.16 μmol∙m
−2
∙s
−1

 with a 

standard deviation of ±9.48 μmol∙m
−2
∙s
−1

 for 21 sites. The absolute value of the standard deviation 

accounted for 25.51% of the average, which was less than the percentage of the absolute standard 

deviation in LUE (31.80% for εmax) and was comparable with that in LUE-SW (25.56% for εmax). 

These comparisons indicate that the key parameters in the LUE-SW and the Farquhar model were 

robust based on site-specific optimization. 

We adopted the one-way analysis of variance (ANOVA) to determine whether there were 

differences among site-specific parameters in LUE, LUE-SW and the Farquhar model according to 

biome types or climate zones. As presented in Table 2, the differences were significant (p < 0.05) 

among nine plant functional types (i.e., biome types + climate zones) for all three simulations, but 

were not significant among biome types or climate zones, except for the biome-based category in the 

Farquhar model. These results suggest that it is necessary to specify parameters according to PFTs in 

both the MODIS algorithm and the Farquhar model to reduce errors introduced by parameter 

classification in regional simulation. 

3.2. Model–Data Agreement on Half-Hourly and Daily Time Scales 

Two methods of parameter adjustment, optimizing the key parameter εmax and adding the soil water 

factor, had the same effects on performances of the MODIS GPP algorithm. Examples are presented 

for one representative year of each site (Table 1) because the behavior is comparable from year to year 

in each simulation. On half-hourly time scale, σnorm values tended to increase linearly from 0.77 to 0.97 

for LUE and from 0.80 to 0.97 for LUE-SW, in R of 0.74–0.92 and 0.78–0.92, respectively (Figure 1a), 

indicating that adding the soil water factor to the algorithm could only improve GPP simulation 

slightly. The two-leaf simulation could well quantify canopy carbon assimilation, in which the average 

R and σnorm were 0.882(±0.042) and 1.007(±0.118), respectively, on a half-hourly time scale. LUE and 

LUE-SW still had same performances after accumulating half-hourly GPP into 8-daily average values 

(Figure 1b). Note that although the key parameters had been optimized for all three models at each 
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site, the standard deviations of estimates by two one-leaf models were lower than those of observation 

systematically. The average σnorm values in LUE-SW decreased by 0.102 and 0.162 on half-hourly and 

8-day average time scales, respectively, compared with the two-leaf model. These analyses suggest 

that parameter optimization is available for compensating the error caused by ignoring soil moisture, 

but is not for the model structural errors caused by the canopy upscaling strategy. 

Table 2. Model parameters 
a
 derived from the 21 selected tower sites for nine plant 

functional types. Parameter differences among plant functional types, biome types and 

climate zones were determined using the one-way analysis of variance. 

Biome 

Types 

Climate 

Zones 

LUEdef  LUE  LUE-SW  Farquhar 

εmax 
b
  εmax  εmax         

   
      

(gC∙MJ
−1

)  (gC∙MJ
−1

)  (gC∙MJ
−1

)  (μmol∙m
−2
∙s
−1

) 

NEF Temperate 0.96  1.01(±0.15) 
c
  1.08(±0.13)  46.69 ± (4.79) 

NEF Boreal 0.96  0.78(±0.18)  0.85(±0.24)  40.70 ± (2.14) 

NDF Boreal 1.09  0.85(±0.22)  1.02(±0.02)  25.28 ± (2.81) 

BEF Temperate 1.27  0.81(±0.09)  1.00(±0.09)  40.81 ± (4.03) 

BDF Temperate 1.17  0.99(±0.19)  1.02(±0.14)  32.21 ± (3.09) 

BDF Boreal 1.17  1.70(±0.03)  1.73(±0.06)  37.55 ± (1.22) 

BDS Temperate 0.84  1.65  1.65  26.21 

BDS Boreal 0.84  0.54  0.71  21.58 

GRA(C3) Temperate 0.86  1.31(±0.12)  1.32(±0.10)  26.33(±2.03) 

Overall  1.01(±0.12)  1.05(±0.33)  1.13(±0.29)  37.16(±9.48) 

Parameter Differences 

PFTs  -  <0.001  <0.001  <0.001 

Biome types  -  0.233  0.388  0.002 

Climate zones  0.791  0.824  0.953  0.127 

Note: a The terms εmax and        
   

      are the maximum light use efficiency and the leaf maximum carboxylation rate at 

25 °C constrained by leaf nitrogen, respectively. b Parameters obtained from Zhao and Running et al. [20]. c Values in 

parentheses are standard deviations. 

Moreover, we quantified differences among MOD17A2, LUEdef and three parameter-adjusted 

simulations (Figure 1b). Site-specific parameters made the simulations more robust than when default 

values for light use efficiency models were used overall. For most sites we selected, σnorm, which were 

ranged from 0.55 to 1.12, increased with R in MOD17A2. The excluded sites are the CA-NS1 (site 

number 10), FR-Pue (site number 12), IT-Cpz (site number 13), DK-Sor (site number 17), CA-Mer 

(site number 18), and CA-NS6 (site numbers 19), most of which are deciduous ecosystems. There was 

no consistency in sites with large or small σnorm between LUEdef and MOD17A2. For instance, in the 

CA-N   site, σnorm increased by 0.45 from LUE (0.76) to LUEdef (1.21), and then by 0.70 from LUEdef 

to MOD17A2 (1.91), which were similar for FR-Pue and CA-NS6. In the ES-ES1 site (site number 5), 

the value increased by 0.40 from LUE (1.19) to LUEdef (1.59), but decreased by 0.25 from LUE to 

MOD17A2 (0.94). These results implied that poor parameterization is one reason for errors in 

MOD17A2, but not for all sites. Errors introduced by parameters could be compensated or intensified 

by uncertainty in meteorological and vegetation data.  



Remote Sens. 2014, 6 3331 

 

Figure 1. Performances of the GPP models for the 21 selected tower sites (Table 1). The 

statistics in the Taylor diagram were derived from the simulated and observed GPP of the 

representative year for each site: (a) half-hourly values and (b) 8-day average values. An 

ideal model has a standard deviation ratio (σnorm) of 1.0 and a correlation coefficient of 1.0 

(REF, the reference point). 

 

We further compared the daily simulations with the EC observations using the linear regression 

analyses for each PFT, as shown in Figure 2, whereas the daily observations were averaged into 8-day 

values to compare with MOD17A2. The slopes of the MODIS product varied largely from 0.49 to 

1.50, and the R
2
 ranged from 0.46 to 0.89. Adopting site-specific parameters and input data effectively 

improved the accuracy of simulations. Further improvements in both correlation and variability were 

achieved by using the two-leaf strategy. The biases of GPP simulated by the two-leaf Farquhar model were 

relatively small for nine PFTs, with the slopes of 0.81–1.07 and R
2
 of 0.67–0.92. Overall, model–data 

agreement across the selected 21 sites was better for the two-leaf model than for the one-leaf model. 

Systematic underestimation existed in the one-leaf models for all PFTs, and could not be compensated 

by adjusting key parameters.  

3.3. Model–Data Agreement on Monthly and Seasonal Time Scales 

We compared monthly and seasonal GPP variation among the simulations to explore the model’s 

responses to varying weather conditions during different seasons. Table 3 shows that uncertainties of 

four estimates were large in the warm season. Although the MODIS product had relatively small 

biases from April to September compared with the other simulations, its standard deviation was 

18.6(±15.9) times greater than the value of bias on average, and the RMSE ranged from 1.53 to 

2.70 gC∙m
−2
∙day

−1
. Thus the low bias of MOD17A2 was caused by terms with opposite signs 

cancelling anthers. The standard deviations of the biases and the RMSE were relatively small in the 

other three simulations during the warm season, indicating that the biases could be considered as a 

measure of modeling uncertainties. LUE underestimated GPP for all seasons, especially in summer, 

when the bias was –1.28(±1.00) gC∙m
−2
∙day

−1
. The negative bias in summer was also apparent for 

LUE-SW, but it was slightly better. The bias in summer was canceled using the two-leaf Farquhar 
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model with reduced RMSE. However, there were both overestimation in spring and underestimation in 

autumn for the Farquhar model overall, even though the leaf maximum carboxylation rate has been 

optimized for each site. 

Photosynthesis in winter accounts for ~7% of yearly carbon assimilation in the selected 11 

evergreen forests, and the contribution is as high as 16.6% at the ES-ES1 site. Thus, we further 

compared the seasonal GPP simulations of this biome type in Figure 3a. Ignoring the MODIS product, 

the site-level model–data agreement exhibited a low degree of variability from spring to fall, but the 

Taylor skill ranged from zero to unity in winter, indicating that photosynthesis dynamic could not be 

captured well during the cold season. The MODIS product for the evergreen forests had a relatively 

large Taylor skill, but agreed well with observations decreased for the deciduous forests and shrubs 

(Figure 3b) and the grasslands (Figure 3c) in all four seasons, especially summer, which contributed to 

the large RMSE indicated in Table 3. 

Figure 2. Comparisons of the observed GPP and the MOD17A2: the GPP simulated by the 

LUE-SW and by the Farquhar model for different plant functional types: (a,b) needleleaf 

evergreen forests in temperate and boreal zones; (c) needleleaf deciduous forests in boreal 

zone; (d) broadleaf evergreen forests in temperate zone; (e,f) broadleaf deciduous forests in 

temperate and boreal zones; (g,h) broadleaf deciduous shrubs in temperate and boreal 

zones; and (i) grasslands. 
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Table 3. Bias and root-mean-square error (RMSE) of daily GPP (in gC∙m
−2
∙day

−1
) with 

respect to individual months and seasons. 

Months/ 

Seasons 

MOD17A2 LUE LUE-SW Farquhar 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

Jan. −0.28(±0.43) 
a
 0.42(±0.39) −0.36(±0.56) 0.49(±0.54) −0.31(±0.46) 0.43(±0.47) −0.26(±0.45) 0.43(±0.44) 

Feb. −0.18(±0.48) 0.42(±0.43) −0.18(±0.65) 0.56(±0.54) −0.15(±0.54) 0.47(±0.49) −0.12(±0.59) 0.49(±0.47) 

Mar. −0.28(±0.98) 0.81(±0.78) −0.11(±0.91) 0.81(±0.61) −0.09(±0.57) 0.57(±0.42) 0.15(±0.95) 0.80(±0.74) 

Apr. −0.15(±1.91) 1.53(±1.31) 0.31(±1.28) 1.22(±0.77) 0.37(±0.98) 1.01(±0.62) 0.76(±1.19) 1.30(±0.87) 

May −0.39(±2.66) 2.36(±1.69) −0.62(±1.30) 1.59(±0.96) −0.42(±1.35) 1.58(±0.95) 0.68(±1.35) 1.48(±0.95) 

Jun. −0.49(±3.08) 2.68(±2.00) −1.52(±1.33) 2.06(±1.10) −1.45(±1.21) 1.80(±1.09) 0.19(±1.30) 1.45(±1.02) 

Jul. −0.33(±3.06) 2.70(±1.76) −1.71(±1.38) 2.02(±1.17) −1.69(±1.30) 1.92(±1.06) −0.36(±1.21) 1.42(±0.62) 

Aug. 0.08(±2.44) 2.16(±1.48) −1.18(±1.29) 1.62(±0.97) −1.03(±1.14) 1.53(±0.85) −0.54(±0.92) 1.23(±0.54) 

Sep. −0.04(±1.75) 1.61(±1.07) −0.71(±0.85) 1.19(±0.54) −0.82(±0.95) 1.30(±0.62) −0.38(±1.10) 1.16(±0.72) 

Oct. −0.28(±1.03) 0.93(±0.65) −0.45(±0.88) 0.87(±0.60) −0.43(±0.90) 0.88(±0.61) −0.11(±1.21) 0.96(±0.83) 

Nov. −0.22(±0.52) 0.51(±0.38) −0.19(±0.66) 0.63(±0.45) −0.15(±0.65) 0.61(±0.46) 0.00(±0.71) 0.60(±0.52) 

Dec. −0.08(±0.58) 0.39(±0.47) −0.08(±0.46) 0.38(±0.37) −0.06(±0.51) 0.38(±0.43) 0.03(±0.55) 0.39(±0.45) 

Winter 
b
 −0.18(±0.44) 0.43(±0.40) −0.20(±0.42) 0.52(±0.44) −0.17(±0.35) 0.77(±0.38) −0.12(±0.34) 0.47(±0.42) 

Spring −0.21(±0.98) 1.02(±0.81) −0.02(±0.78) 0.95(±0.51)  0.01(±0.47) 2.05(±0.98)  0.22(±0.69) 0.96(±0.58) 

Summer −0.40(±2.71) 2.66(±1.70) −1.28(±1.00) 1.96(±0.96) −1.21(±0.88) 1.57(±0.70)  0.17(±0.90) 1.54(±0.69) 

Fall −0.06(±1.59) 1.81(±0.95) −0.81(±0.66) 1.36(±0.60) −1.08(±0.68) 0.47(±0.42) −0.36(±0.80) 1.21(±0.54) 

All year −0.22(±1.25) 1.78(±0.96) −0.59(±0.37) 1.38(±0.51) −0.66(±0.38) 0.43(±0.47) −0.01(±0.47) 1.18(±0.44) 

Note: a Values in parentheses are standard deviations. b Winter is composed of December, January and February with one 

year divided into four seasons. 

Figure 3. Boxplots of Taylor skill (S) for daily GPP by models and seasons across 

(a) evergreen forests, (b) deciduous forests and shrubs, and (c) grasslands. Panels show the 

interquartile range (box), mean (square), median (solid line), range (whiskers), and 

outliers (cross). The models and seasons are sorted by the median Taylor skill. 
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Figure 4. Boxplots of bias and root-mean-square error (RMSE) for seasonally averaged 

diurnal composites simulated by the LUE-SW and the Farquhar model: (a) evergreen 

forests; (b) deciduous forests and shrubs; and (c) grasslands. 

 

 

 

We compared the biases and RMSE of seasonally composite diurnal variations estimated by the 

LUE-SW and the Farquhar model to find further discrepancies between the simulations (Figure 4). 

Overall with site-specific parameters (Table 2), both models had similar half-hourly biases and RMSE 

in all four seasons, excluding obvious underestimations by LUE-SW during the morning and afternoon 

of summer. The negative biases were improved using the two-leaf Farquhar model with reduced RMSE, 

especially in the deciduous forests and shrubs. The average biases increased from −35.2(±24.0) to 

−0.8 ±  .   μgC∙m
−2
∙s
−1

 and RMSE decreased from 43.3(±35.8) to 39.0(±32.4) μgC∙m
−2
∙s
−1

 

during daytime (6:00–18:00) for forests and shrubs in summer (Figure 4a,b). However, a significant 
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improvement by the two-leaf model did not perform in the grasslands (Figure 4c). Note that the 

estimates by both models had great RMSE during the midday of spring and fall for all biome types, 

and during the midday of winter for evergreen forests. These results suggest that, whether model 

structures are complex or simple, the photosynthetic models could not well capture change of GPP 

consistently in spring and fall for forests and shrubs, and seasonal change for grasslands. 

4. Discussion 

4.1. Uncertainties in Input Data and Parameters in MOD17A2 

Many studies have demonstrated that the MODIS product normally underestimates GPP compared 

with the EC observations, including savanna and grassland in Africa [14], and forest, grassland and 

cropland in east Asia [12,13,27,87] and in North America [22,24,88]. However, yearly overestimations 

were also found at some forest sites [8,13,89,90]. In this study, overestimated and underestimated GPP 

were both observed at the selected sites (Figure 2), especially in the deciduous forests and shrubs 

(Figure 3b). It raises doubts as to the accuracy of the simulated temporal and spatial distributions of the 

MODIS GPP product at regional or global scale because of errors introduced by the reanalysis of 

meteorological data [65], the fraction of photosynthetically active radiation (fPAR in 

Equation (1)) [8,14,71], the land cover data [14,91] and the model structure [24,71]. 

Replacing the reanalysis meteorological and MODIS vegetation data [5,65] with the tower data 

(LUEdef) did not obviously improve GPP simulations (Figure 1b). Large and small σnorm were both 

observed in LUEdef, and the sites with large errors were not consistent with those in MOD17A2 

(Figure 1b). For some sites, such as ES-ES1, CA-Oas, CA-Mer, AT-Neu and IE-Dri, the performances 

were even worse in LUEdef than in MOD17A2. Combining the tower observations with the default 

parameters in BPLUT [20] could compensate errors introduced by the biome-dependent parameters for 

some sites, such as ES-ES1, but would increase errors for others, as CA-NS1, FR-Pue and CA-NS6 

(Figure 1b). Adjusting parameters using tower data could effectively improve GPP estimate by the 

MODIS algorithm, but systematic underestimations were observed (Figure 2), thereby indicating 

model structural errors. 

4.2. Uncertainties in Parameter Sets in the MODIS GPP Algorithm 

We adjusted the key parameter εmax in the models that based on the MODIS GPP algorithm (LUE 

and LUE-SW) at site level. The values in LUE-SW were greater than those in LUE on average, but 

both were not significantly different from the default values except for CA-Oas, DK-Sor, CA-Mer and 

AT-Neu, for which the value of εmax was greater than 1.3 gC∙MJ
−1

 (Table 2). These sites include the 

biome types of shrub, grassland and deciduous forest. Overall, the optimized εmax values in both 

models were in the range of 0.55–2.8 gC∙MJ
−1

, as reported by Garbulsky et al. [92], who calculated the 

global gross radiation use efficiency from the data provided by 35 EC flux sites and the MODIS fPAR 

data. Many studies have optimized εmax in the MODIS GPP algorithm based on site data [14,27]. Those 

results have also demonstrated that the values for shrub and grassland were larger than those in the 

look-up table, and εmax reached ~1.56 gC∙MJ
−1

 for deciduous forests [93].  
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Our values of εmax are acceptable, but an overestimated εmax could be induced by an underestimated 

fPAR value [14]. In this study, fPAR was calculated based on a function of LAI and k (Equation (2)). 

Although we corrected the input LAI based on the site-measured LAImax (Table 1), uncertainties in the 

change of LAI with phenology still existed at the site level because the monthly data were extracted 

from a global LAI map [4]. In Equation (2), we simplified the k as 0.5 across a range of biome types. 

However, this value is dependent on the leaf distribution [94] and the zenith angle, which ranged 

between 0.3 and 0.6 [95]. The best estimates of k would be derived from stands with minimal 

clumping for each site [94,95].  

4.3. Link between Parameter Sets and Model Structures 

A revision of parameters in GPP simulation could cancel errors caused by model structure, 

including coupled stomatal conductance and carbon assimilation scheme [7], two-stream radiative 

transfer, and leaf photosynthesis [2]. We evaluated the application of parameter adjustment in the 

MODIS land algorithm. The results demonstrated that the performances of parameter-optimized LUE 

and LUE-SW were identical in terms of GPP estimation (Figure 1), but the optimized εmax in the latter 

model had lower standard deviation than the former for sites within the same PFT (Table 2), even 

though the parameters categorized according to PFTs are not the best option. After optimizing 

parameters in simple photosynthesis and transpiration models using measurements from 101 EC flux 

towers, Groenendijk et al. [81] pointed out that a simple PFT classification could induce the 

uncertainties in the photosynthesis and water vapor flux estimates, and site-year parameters gave the 

best predictions. However, this parameter uncertainty could be reduced by adding control factors, such 

as considering the scale of soil moisture in the one-leaf model (Table 2). Furthermore, we quantified the 

relationships between annual average soil water factors with optimized εmax in LUE and in LUE-SW, 

excluding four sites for which εmax was greater than 1.3 gC∙MJ
−1

 (Figure 5). The regression analysis 

shows that the εmax in LUE decreased linearly with the soil water factor. The reduction was as much as 

a half in LUE-SW, as evidenced by the slopes reducing from 0.77 to 0.38 and by the constants 

increasing from 0.32 to 0.73, especially for sites with low annual average soil water factors and large 

soil water changes. It should be noted that the annual rainfall values of our selected sites were all 

greater than 200 mm∙yr
−1

 (Table 1). More validations were needed in those water-limited regions with 

annual precipitation less than 100 mm∙yr
−1

[8,96]. 
 

Moreover, parameter adjustment could not compensate all structural errors, such as the error caused 

by the canopy upscaling strategy. Although we optimized the parameters using data assimilation, GPP 

estimated by both LUE and LUE-SW still had large negative biases in summer (Table 3). The biases 

were reduced by 81.9% using the two-leaf Farquhar model. Schaefer et al. [36] compared 26 models 

with standard parameters at 39 EC flux tower sites across North America and found that the average 

GPP bias was −0.87 gC∙m
−2
∙day

−1
 in summer (Figure 2a), which is between the biases of LUE-SW  

(−1.21 gC∙m
−2
∙day

−1
) and the Farquhar model (0.17 gC∙m

−2
∙day

−1
) in the same season that we 

estimated (Table 3). In their study, more than half of the models adopted the one-leaf upscaling 

strategy. An underestimation in the MODIS GPP product during summer was also reported by 

Zhang et al. [24], who evaluated different regions across the conterminous U.S. The reason for 

underestimation is that the one-leaf strategy ignores a large contribution of diffuse PAR to the shaded 
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leaves, and the contribution is more efficiently absorbed by the canopy for photosynthesis than direct 

PAR. In the strategy of separating the canopy into two parts, the sunlit leaves achieve a high rate of 

light-saturated photosynthesis and have a low light use efficiency, whereas shaded leaves are only 

limited by the electron transport related to direct and diffused radiation, which lead to a high light use 

efficiency [25,73,97,98]. Many efforts have been made to improve the structure of the MODIS land 

algorithm by considering photosynthesis rate saturation or light saturation. Propastin et al. [71] 

adopted a saturating function for light use efficiency adjustment that allowed for saturation of gross 

photosynthesis at a high irradiance. This modification improved the performance of the MODIS GPP 

algorithm for a tropical forest. Separating the canopy into sunlit and shaded leaves, He et al. [13,15] 

developed a two-leaf light use efficiency model based on the MODIS algorithm, and the model 

properly described differences in the light use efficiencies of sunlit and shaded leaves. 

Figure 5. The annually averaged soil water factor (βt) versus the optimized maximum light 

use efficiency (εmax) used in the LUE and LUE-SW, excluding four sites with εmax greater 

than 1.3 gC∙MJ
−1

 (gray symbols). The bar represents ±0.5 standard deviation of βt. 

 

Further improvement should focus on the photosynthesis models’ capacities in capturing seasonal 

change. In this study, all models exhibited large uncertainties in winter and spring, even if the key 

parameters in the two-leaf Farquhar model have been well optimized (Table 3, Figures 3 and 4). This 

result is the same as the simulations from 26 models at 39 EC sites [36]. Fortunately, many approaches 

could be referred to quantify seasonal variation of key variables in GPP estimates. A comparison 

between using the dynamic maximum velocity of carboxylation (Vcmax in Equation (A3)) and the 

constant Vcmax in the Farquhar models by Muraoka et al. [99] indicated that Vcmax variation had 

remarkable effects on GPP, and an overestimate of 15% was caused by assuming Vcmax to be constant 

in a cool-temperate deciduous broadleaf forest. Groenendijk et al. [100] upscaled the ecosystem 

parameters Vcmax with LAI for 81 EC sites, but the seasonal variation of Vcmax could not be sufficiently 

explained at the ecosystem scale. By seasonally changing the photosynthetic parameters in a Farquhar-type 

biochemical model, Zhu et al. [101] successfully reproduced the observed response in net assimilation rates 

at leaf scale. According to satellite data and the Biome-BGC terrestrial ecosystem model, Ichii et al. [102] 
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suggested that proper setting of the root depths was important to simulate GPP seasonality in tropical 

forests. On the basis of these studies, a widely accepted concept is needed to improve seasonal change 

in GPP estimate. 

5. Conclusions 

By comparing GPP estimates with parameter adjustment in the MODIS algorithm across nine PFTs 

at half-hourly, daily, monthly and seasonal scales, our multisite study illustrates as follows: 

(1) Large bias was observed in the MODIS GPP product, especially in deciduous forests and 

shrubs and grasslands. Its uncertainties were affected by both input data and the look-up table 

values of εmax for individual PFTs. It is necessary to optimize the parameters in the look-up 

table used by the MODIS algorithm, but the optimized parameters should correspond to 

specific input data for applications, i.e., the optimized parameters cannot be applied to a 

simulation with changed driver data because errors from parameters and input data 

can accumulate. 

(2) Optimizing the key parameter εmax in the MODIS GPP algorithm can compensate the errors 

caused by ignoring soil water factor at the site level, but the εmax values would have large 

uncertainties among sites within the same PFT and among the PFTs, especially for sites with 

low yearly average soil water factors. This result casts doubt on the accuracy of simulated 

spatial distribution of GPP yielded by the MODIS algorithm. Moreover, GPP was 

underestimated by the one-leaf models in summer, regardless of whether the soil water factor 

was considered, but could be improved by separating the canopy structure into sunlit and 

shaded parts. This result indicates that improving model structure is a better choice than only 

adjusting parameters. Photosynthetic dynamics in spring and fall for forests and shrubs and 

seasonal GPP change for grasslands could not be captured by both one-leaf and two-leaf 

models. Therefore, there is a need to improve seasonal and phenology variations of key 

parameters and variables in carbon assimilation calculation to reduce uncertainties in 

GPP simulation.  
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Appendix  

Photosynthesis in the Dynamic Land Model 

The Dynamic Land Model adopts a two-leaf Farquhar model to simulate carbon assimilation. The 

total canopy photosynthesis (A) in the model is calculated for sunlit and shaded parts by adopting 

sunlit and shaded leaf area indices (LAIsun and LAIsha) separately, following [73]:  

                            (A1) 

The net CO2 assimilation rate at leaf level is expressed as follows [37,73]: 

    min                      (A2) 
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where     ,     ,      and      are the Rubisco-limited rate, light-limited rate, export-limited rate and 

leaf dark respiration of sunlit or shaded leaf (i = 1 or 2), respectively, which are calculated following 

Chen et al. [73] and Oleson et al. [37].      is expressed as:  

     
                

      
 (A3) 

where     is the internal leaf CO2 partial pressure, which is determined by the leaf stomatal resistance 

according to the Ball–Woodrow–Berry conductance model [37,A1]. Г* and Kc are the CO2 compensation 

point and the function of enzyme kinetics, respectively, both of which are temperature-dependent 

parameters.         is the maximum carboxylation rate, and the value is calculated from the maximum 

rate at 25 °C (       ,  ) after adjustment for soil water (Equations (5), (A14) and (A15)), leaf 

temperature, leaf nitrogen and day length [37]. The sunlit and shaded         are obtained through 

vertical integration with respect to the leaf area index (LAI) as [4,37]:  

                   
   

     
                     

                      
 (A4) 

                   
   

     
                                          

                   
 

(A5) 

where FVN is the relative change of        ,   with leaf nitrogen, Na is the leaf nitrogen of the canopy, 

Kn is the foliage nitrogen decay coefficient, and Kb is the direct beam extinction coefficient, which is 

determined by division of the foliage projection coefficient (G(θ)) by the cosine of the solar zenith 

angle (μ), i.e., Kb = G(θ)/μ [4,37]. We assume that the value of G(θ) is 0.5 for a spherical leaf angle 

distribution.  

The light-limited rate    for the sunlit and shaded leaves is as follows [73]:  

     
             

        .        
 

      
        

 (A6) 

where        is the light-saturated rate of electron transport in the photosynthetic carbon reduction 

cycle in leaf cells, which was simulated by a linear equation related to the        .        is the 

photosynthetic photon flux density, which is expressed as:  

        .              (A7) 

where q25 is the PFTs-dependent quantum efficiency at 25 °C.        is the absorbed 

photosynthetically active radiation, and the values for the sunlit and shaded leaves are calculated as 

follows [4,73]:  

                              (A8) 

                     
(A9) 

where   is the canopy albedo. PARsun and PARsha represent the direct and diffused PAR per unit leaf 

area within the canopy:  

               μ  (A10) 
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(A11) 

where   is the cosine of the mean leaf-sun angle. The angle is equal to 60° for a canopy with a 

spherical leaf angle distribution [73]. PARdir, PARdif and PARdif,under are the direct and diffuse 

components of the incoming PAR and the diffuse radiation that reach to the forest floor, respectively, 

following Chen et al. [73]. C quantifies the contribution of multiple scattering of the total PAR to the 

diffuse PAR per unit leaf area within the canopy [4,73]. 

We calculated photosynthesis for sunlit and shaded parts separately by adopting the sunlit and 

shaded leaf area indices (LAIsun and LAIsha). The leaf stratification strategy is as follows [32,73]:  

       
  exp           

  
 (A12) 

                  (A13) 

where Ω is the PFT-dependent clumping index [A2], which characterizes the leaf spatial distribution 

pattern in terms of the degree of its deviation from the random case. 

DLM adopted same formulas as that in the Community Land Model (CLM) version 4.0 yield soil 

moisture scale βt (Section 8.3 in Oleson et al. [37]). The function depends on the plant wilting factor 

(wi) and the fraction of roots (ri) for each of the fifteen-layer soil layers (i) as follows:  
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(A15) 

where ψi is the soil water metric potential, ψc and ψo are the soil water potential when stomata are fully 

closed and fully open, respectively, both of which are biome-specific parameters. θsat,i and θice,i are the 

water content at saturation and the ice content, respectively. The wi value equals 0 when the temperature 

of the soil layer (Ti) is lower than the threshold (−2 °C). zh,i is the depth from the soil surface to the 

interface between layers i and i + 1. ra and rb are plant-dependent root distribution parameters. 

References 

A1. Ball, J.T.; Woodrow, I.E.; Berry, J.A. A Model Predicting Stomatal Conductance and Its 

Contribution to th Control of Photosynthesis under Different Envrionmental Conditions. In 

Progress in Photosynthesis Research; Biggins, J., Ed.; Martinus Nijhoff: Dordrecht, The 

Nertherlands, 1987, pp. 221–224. 

A2. Tang, S.; Chen, J.M.; Zhu, Q.; Li, X.; Chen, M.; Sun, R.; Zhou, Y.; Deng, F.; Xie, D. LAI 

inversion algorithm based on directional reflectance kernels. J. Environ. Manag. 2007, 85, 638–648. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


