摘 要: |
单木参数对当前的森林资源管理、生态研究以及生物多样性保护等具有重要意义。无人机立体影像数据与单木识别算法为单木参数的低成本、自动化获取提供了基础。现有研究表明,常用的基于局部最大值搜索的单木识别算法面对密集林分时存在严重的漏识别问题,影响了参数提取的精度,因此本文提出了顾及单木三维形态的无人机立体影像单木识别新算法。算法首先综合利用无人机立体影像的高程与RGB光谱信息,通过随机森林分类进行林冠区的提取;然后利用形态学的多层腐蚀、膨胀与连通区标记进行树冠相连单木的分离与树冠中心点的提取,从而实现单木自动化识别。本文选取内蒙古大兴安岭林区和四川王朗林区的4块样地进行验证,以目视解译数据为参考,分别与基于高程值的局部最大值搜索算法(算法A)、基于RGB光谱亮度值的局部最大值搜索算法(算法B)进行比较。结果显示:本文提出的算法在4个样地的平均F1-score为94.17%,与算法A和算法B相比分别提高了15.85%和9.37%;而对于密集样地,本文提出的算法在查全率上相比算法A和算法B分别提高51.79%和35.64%。结果表明本文提出的算法在不同林区均能够实现较好的单木识别效果,特别是能够有效避免密集林分下的漏识别问题,为基于无人机立体影像的单木识别研究提供了一种新的思路。 |