英文摘要: |
Urban vibrancy contributes towards a successful city and high-quality life for people as one of its vital elements. Therefore, the association between service facilities and vibrancy is crucial for urban managers to understand and improve city construction. Moreover, the rapid development of information and communications technology (ICT) allows researchers to easily and quickly collect a large volume of real-time data generated by people in daily life. In this study, against the background of emerging multi-source big data, we utilized Tencent location data as a proxy for 24-h vibrancy and adopted point-of-interest (POI) data to represent service facilities. An analysis framework integrated with ordinary least squares (OLS) and geographically and temporally weighted regression (GTWR) models is proposed to explore the spatiotemporal relationships between urban vibrancy and POI-based variables. Empirical results show that (1) spatiotemporal variations exist in the impact of service facilities on urban vibrancy across Guangzhou, China; and (2) GTWR models exhibit a higher degree of explanatory capacity on vibrancy than the OLS models. In addition, our results can assist urban planners to understand spatiotemporal patterns of urban vibrancy in a refined resolution, and to optimize the resource allocation and functional configuration of the city. |