论文
论文题目: Quantifying the Land Use and Land Cover Changes in the Yellow River Basin while Accounting for Data Errors Based on GlobeLand30 Maps
第一作者: Sun Xiaofang; Li Guicai; Wang Junbang; Wang Meng
联系作者:
发表年度: 2021
摘  要: Land use and land cover (LULC) change influences many issues such as the climate, ecological environment, and economy. In this study, the LULC transitions in the Yellow River Basin (YRB) were analyzed based on the GlobeLand30 land use data in 2000, 2010, and 2020. The intensity analysis method with hypothetical errors calculation was used, which could explain the deviations from uniform land changes. The strength of the evidence for the deviation was revealed even though the confusion matrixes of the LULC data at each time point for the YRB were unavailable. The results showed that at the interval scale, the land transition rate increased from the first to the second period for all of the upper, middle, and lower reaches. The exchange component was larger than the quantity and shift component, and the gross change was 4.1 times larger than the net change. The size of cultivated land decreased during both intervals. The artificial surfaces gains were active for all three reaches and had strong evidence. A hypothetical error in 93% of the 2000 data and 58% of the 2010 data can explain deviations from uniform transition given woodland gain during 2000-2010 and 2010-2020. Ecological restoration projects such as Grain for Green implemented in 2000 in the upper reaches resulted in the woodland increase.
英文摘要: Land use and land cover (LULC) change influences many issues such as the climate, ecological environment, and economy. In this study, the LULC transitions in the Yellow River Basin (YRB) were analyzed based on the GlobeLand30 land use data in 2000, 2010, and 2020. The intensity analysis method with hypothetical errors calculation was used, which could explain the deviations from uniform land changes. The strength of the evidence for the deviation was revealed even though the confusion matrixes of the LULC data at each time point for the YRB were unavailable. The results showed that at the interval scale, the land transition rate increased from the first to the second period for all of the upper, middle, and lower reaches. The exchange component was larger than the quantity and shift component, and the gross change was 4.1 times larger than the net change. The size of cultivated land decreased during both intervals. The artificial surfaces gains were active for all three reaches and had strong evidence. A hypothetical error in 93% of the 2000 data and 58% of the 2010 data can explain deviations from uniform transition given woodland gain during 2000-2010 and 2010-2020. Ecological restoration projects such as Grain for Green implemented in 2000 in the upper reaches resulted in the woodland increase.
刊物名称: LAND
全文链接:
论文类别: SSCI