英文摘要: |
Solar-induced chlorophyll fluorescence (SIF) is considered as a prospective indicator of vegetation photosynthetic activity and the ecosystem carbon cycle. The current coarse spatial-temporal resolutions of SIF data from satellite missions and ground measurements still cannot satisfy the corroboration of its correlation with photosynthesis and carbon flux. Practical approaches are needed to be explored for the supplementation of the SIF measurements. In our study, we clarified the diurnal variations of leaf and canopy chlorophyll fluorescence for a subtropical evergreen coniferous forest and evaluated the performance of the canopy chlorophyll concentration (CCC) approach and the backward approach from gross primary production (GPP) for estimating the diurnal variations of canopy SIF by comparing with the Soil Canopy Observation Photosynthesis Energy (SCOPE) model. The results showed that the canopy SIF had similar seasonal and diurnal variations with the incident photosynthetically active radiation (PAR) above the canopy, while the leaf steady-state fluorescence remained stable during the daytime. Neither the CCC nor the raw backward approach from GPP could capture the short temporal dynamics of canopy SIF. However, after improving the backward approach with a correction factor of normalized PAR incident on leaves, the variation of the estimated canopy SIF accounted for more than half of the diurnal variations in the canopy SIF (SIF687: R-2 = 0.53, p < 0.001; SIF760: R-2 = 0.72, p < 0.001) for the subtropical evergreen coniferous forest without water stress. Drought interfered with the utilization of the improved backward approach because of the decoupling of SIF and GPP due to stomatal closure. This new approach offers new insight into the estimation of diurnal canopy SIF and can help understand the photosynthesis of vegetation for future climate change studies. |