论文
论文题目: Optimization of multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping
第一作者: Zhu Wanxue, Sun Zhigang, Huang Yaohuan, Yang Ting etc.
联系作者:
发表年度: 2021
摘  要:
英文摘要: Unmanned aerial vehicle (UAV) system is an emerging remote sensing tool for profiling crop phenotypic characteristics, as it distinctly captures crop real-time information on field scales. For optimizing UAV agro-monitoring schemes, this study investigated the performance of single-source and multi-source UAV data on maize phenotyping (leaf area index, above-ground biomass, crop height, leaf chlorophyll concentration, and plant moisture content). Four UAV systems [i.e., hyperspectral, thermal, RGB, and Light Detection and Ranging (LiDAR)] were used to conduct flight missions above two long-term experimental fields involving multi-level treatments of fertilization and irrigation. For reducing the effects of algorithm characteristics on maize parameter estimation and ensuring the reliability of estimates, multi-variable linear regression, backpropagation neural network, random forest, and support vector machine were used for modeling. Highly correlated UAV variables were filtered, and optimal UAV inputs were determined using a recursive feature elimination procedure. Major conclusions are (1) for single-source UAV data, LiDAR and RGB texture were suitable for leaf area index, above-ground biomass, and crop height estimation; hyperspectral outperformed on leaf chlorophyll concentration estimation; thermal worked for plant moisture content estimation; (2) model performance was slightly boosted via the fusion of multi-source UAV datasets regarding leaf area index, above-ground biomass, and crop height estimation, while single-source thermal and hyperspectral data outperformed multi-source data for the estimation of plant moisture and leaf chlorophyll concentration, respectively; (3) the optimal UAV scheme for leaf area index, above-ground biomass, and crop height estimation was LiDAR + RGB + hyperspectral, while considering practical agro-applications, optical Structure from Motion + customer-defined multispectral system was recommended owing to its cost-effectiveness. This study contributes to the optimization of UAV agro-monitoring schemes designed for field-scale crop phenotyping and further extends the applications of UAV technologies in precision agriculture.
刊物名称: PRECISION AGRICULTURE
全文链接:
论文类别: SCI