论文
论文题目: Irrigation Regime for Protection on Root Intrusion for Subsurface Drip Irrigation
第一作者: Guo Shaolei, Wang Shunsheng
联系作者:
发表年度: 2021
摘  要:
英文摘要: Root intrusion into emitters poses a threat to the service lives of subsurface drip irrigation systems. In an attempt to address this problem, an experiment was conducted on spring wheat grown in soil columns installed in a greenhouse to study the effects of irrigation regimes in protecting against root intrusion into emitters. Spring wheat was planted in soil columns. The specifications of the soil column were 15-cm width, 60-cm length and 100-cm depth. Drip tapes were buried manually in the center of the soil columns at a -40-cm depth. The soil matrix potential at a 20-cm depth immediately over the drip emitters was used to schedule the subsurface drip irrigation regime. Five different irrigation arrangements, with targeted soil matrix potentials of -10, -20, -30, -40 and -50 kPa, were maintained. The soil matrix potential influenced the spring wheat root distribution, emitter flow rate, root intrusion, and spring wheat yield and quality. The total root dry weight increased as the soil matrix potential decreased. Root length density at 35-45-cm increased as the soil matrix potential increased. The decrease in the emitter flow rate increased along with the soil matrix potential. All the treatments had root intrusion, but its severity was correlated with the soil matrix potential. Root intrusion first decreased as the soil matrix potential decreased but then increased as the soil matrix potential continued to decrease. The lowest root intrusion rate (22.22%), as well as the greatest relative yield and relative thousand-grain weight values, were achieved with a soil matrix potential of -40 kPa.
刊物名称: JOURNAL OF BIOBASED MATERIALS AND BIOENERGY
全文链接:
论文类别: SCI