英文摘要: |
The strong relationship between gross primary productivity (GPP) and sun-induced chlorophyll fluorescence (SIF) provided a novel perspective to estimate the terrestrial GPP based on satellite SIF. However, the influence of environmental conditions on the relationship between GPP and SIF is still unclear. In this study, we synthesized GOME-2 SIF and FLUXCOM GPP coupled with climate data to explore the spatial pattern of the GPP-SIF relationship and its sensitivity to climate conditions at global scale during 2007-2018. The slope (GPP/SIF) of the intercept-free linear regression, which contained information about the allocation of light energy for fluorescence and photosynthesis, was used to represent the GPP-SIF relationship. Our study found that the slope and R2 of the GPP-SIF relationship were spatially heterogeneous, with high slope mainly distributed in the tropical regions and boreal regions and the high R2 mainly concentrated in temperate ecosystems of the Northern Hemisphere. In climate regimes, we found that the GPP-SIF relationship was jointly constrained by environmental variables and the slope had a significant decreasing trend in climate regions from high mean annual temperature (MAT) and low mean annual photosynthetically active radiation (MAR) to low MAT and high MAR. Furthermore, the slope and mean annual precipitation (MAP) have a positive correlation, which indicated the GPPSIF relationship was climate-dependent. Environmental stress may destroy the relationship between fluorescence and photosynthesis by increasing non-photochemical quenching (NPQ). Our research showed that environmental conditions regulated the light energy distribution for fluorescence and photosynthesis, so accurate estimation of terrestrial ecosystem productivity based on SIF should consider the constraints of climate variables. |