摘 要: |
Exploring the changes in wheat traits under future climate change and their contributions to yield changes is essential to improve the understanding of climate impact mechanisms and develop climate-resilient cultivars, which however has been seldom conducted. In this study, using a process-based crop model (APSIM-Wheat), meta-regression analyses, and machine learning approaches, we assessed the impacts of different warming levels on soil environments and wheat traits; investigated the impacts of future climate change on wheat traits, growth and development; and identified the favorable wheat traits for breeding under future climate change conditions. Meta-analyses showed that climate warming could significantly advance anthesis date by 3.50% and shorten the entire growth duration by 1.18%, although the duration from anthesis to maturity could be elongated by 7.72%. It could also increase grain yield slightly by 2.72% in the North China Plain, mainly due to the increase in biomass by 6.66%, grain weight by 3.86% and the elongating grain-filling period. However, high temperatures could significantly reduce aboveground biomass. 'the APSIM-Wheat model was validated based on three years' high-quality environment-controlled experimental data in the long-term warming and conservation tillage fields at Yucheng comprehensive experiment station in the North China Plain. The results showed that the mean yield would decrease under RCP4.5 for both tillage managements (conservational tillage: 0.55%, no-tillage: 6.88%), but increase conservational tillage yield (7.7%) under RCP8.5, relative to 1980-2010, owing to the interactive impacts of climate, CO2 and tillage on wheat traits. Soil moisture would play a more important role in biomass, yield, height, LAI, and grain number for conventional tillage than for no-tillage system, and in the future than in the historical period. Our findings gained insights into the impacts of climate change on wheat traits and yield under different tillage managements, which are essential to understand climate change impact mechanisms and develop climate-resilient cultivars. |