论文
论文题目: Decoupling of plant carbon and nitrogen under elevated CO2 and nitrogen addition in a typical alpine ecosystem
第一作者: Zhao Guang, Chen Yao, Zhang Yangjian, Cong Nan etc.
联系作者:
发表年度: 2022
摘  要: Aims Vegetation in high-altitude regions is hypothesized to be more responsive to increasing atmospheric CO2 concentrations due to low CO2 partial pressure. However, the underlying mechanisms driving this response at an ecosystem scale are poorly understood. We aimed to explore the plant carbon (C) and nitrogen (N) relationships and biomass allocation in response to elevated CO2 and N addition in a Tibetan meadow. Methods A 5-year manipulation experiment was conducted in an alpine meadow (4585 m above sea level) to explore the responses of plant carbon (C), nitrogen (N), and biomass dynamics, as well as their allocation schemes, to elevated CO2 (from 380 ppm to 480 ppm) and N fertilization. Results Elevated CO2 alone significantly enhanced aboveground plant biomass by 98%, exhibiting a stronger CO2 fertilization effect than the global average level (20%) for grasslands. Elevated CO2 favored N accumulation in aboveground parts despite the declined concentration. Nitrogen fertilization alleviated the N constraints on CO2 fertilization effects, which strengthened C sequestration capacity for the aboveground plant tissues. Moreover, our results indicate a decoupling between C and N cycles in alpine ecosystems under elevated CO2, especially in the N-enrichment environments. Conclusions Overall, this study shows a high sensitivity of aboveground plant biomass and decoupled C-N relationships under elevated CO2 and N fertilization for high-elevation alpine ecosystems, highlighting the need to incorporate altitude effects into Earth System Models in predicting C cycle feedbacks to climate changes.
英文摘要:
刊物名称: PLANT AND SOIL
全文链接:
论文类别: SCI