摘 要: |
The Arctic warming rate is triple the global average, which is partially caused by surface albedo feedback (SAF). Understanding the varying pattern of SAF and the mechanisms is therefore critical for predicting future Arctic climate under anthropogenic warming. To date, however, how the spatial pattern of seasonal SAF is influenced by various land surface factors remains unclear. Here, we aim to quantify the strengths of seasonal SAF across the Arctic and to attribute its spatial heterogeneity to the dynamics of vegetation, snow and soil as well as their interactions. The results show a large positive SAF above -5% K-1 across Baffin Island in January and eastern Yakutia in June, while a large negative SAF beyond 5% K-1 is observed in Canada, Chukotka and low latitudes of Greenland in January and Nunavut, Baffin Island and Krasnoyarsk Krai in July. Overall, a great spatial heterogeneity of Arctic land warming induced by positive SAF is found with a coefficient of variation (CV) larger than 61.5%, and the largest spatial difference is detected in wintertime with a CV > 643.9%. Based on the optimal parameter-based geographic detector model, the impacts of snow cover fraction (SCF), land cover type (LC), normalized difference vegetation index (NDVI), soil water content (SW), soil substrate chemistry (SC) and soil type (ST) on the spatial pattern of positive SAF are quantified. The rank of determinant power is SCF > LC > NDVI > SW > SC > ST, which indicates that the spatial patterns of snow cover, land cover and vegetation coverage dominate the spatial heterogeneity of positive SAF in the Arctic. The interactions between SCF, LC and SW exert further influences on the spatial pattern of positive SAF in March, June and July. This work could provide a deeper understanding of how various land factors contribute to the spatial heterogeneity of Arctic land warming at the annual cycle. |