论文
论文题目: CO2 fertilization is spatially distinct from stomatal conductance reduction in controlling ecosystem water-use efficiency increase
第一作者: Zhang Xuanze, Zhang Yongqiang, Tian Jing, Ma Ning etc.
联系作者:
发表年度: 2022
摘  要: It is well known that global ecosystem water-use efficiency (EWUE) has noticeably increased over the last several decades. However, it remains unclear how individual environmental drivers contribute to EWUE changes, particularly from CO2 fertilization and stomatal suppression effects. Using a satellite-driven water-carbon coupling model-Penman-Monteith-Leuning version 2 (PML-V2), we quantified individual contributions from the observational drivers (atmospheric CO2, climate forcing, leaf area index (LAI), albedo and emissivity) across the globe over 1982-2014. The PML-V2 was well-calibrated and showed a good performance for simulating EWUE (with a determination coefficient (R (2)) of 0.56) compared to observational annual EWUE over 1982-2014 derived from global 95 eddy flux sites from the FLUXNET2015 dataset. Our results showed that global EWUE increasing trend (0.04 +/- 0.004 gC mm(-1) H2O decade(-1)) was largely contributed by increasing CO2 (51%) and LAI (20%), but counteracted by climate forcing (-26%). Globally, the CO2 fertilization effect on photosynthesis (23%) was similar to the CO2 suppression effect on stomatal conductance (28%). Spatially, the fertilization effect dominated EWUE trend over semi-arid regions while the stomatal suppression effect controlled over tropical forests. These findings improve understanding of how environmental factors affect the long-term change of EWUE, and can help policymakers for water use planning and ecosystem management.
英文摘要:
刊物名称: ENVIRONMENTAL RESEARCH LETTERS
全文链接:
论文类别: SCI