论文
论文题目: Outlier Reconstruction of NDVI for Vegetation-Cover Dynamic Analyses
第一作者: Sun Zhengbao, Wang Lizhen, Chu Chen, Zhang Yu
联系作者:
发表年度: 2022
摘  要: The normalized difference vegetation index (NDVI) contains important data for providing vegetation-cover information and supporting environmental analyses. However, understanding long-term vegetation cover dynamics remains challenging due to data outliers that are found in cloudy regions. In this article, we propose a sliding-window-based tensor stream analysis algorithm (SWTSA) for reconstructing outliers in NDVI from multitemporal optical remote-sensing images. First, we constructed a tensor stream of NDVI that was calculated from clear-sky optical remote-sensing images corresponding to seasons on the basis of the acquired date. Second, we conducted tensor decomposition and reconstruction by SWTSA. Landsat series remote-sensing images were used in experiments to demonstrate the applicability of the SWTSA. Experiments were carried out successfully on the basis of data from the estuary area of Salween River in Southeast Asia. Compared with random forest regression (RFR), SWTSA has higher accuracy and better reconstruction capabilities. Results show that SWTSA is reliable and suitable for reconstructing outliers of NDVI from multitemporal optical remote-sensing images.
英文摘要:
刊物名称: APPLIED SCIENCES-BASEL
全文链接:
论文类别: SCI