论文
论文题目: Application of an improved multi-temporal InSAR method and forward geophysical model to document subsidence and rebound of the Chinese Loess Plateau following land reclamation in the Yan'an New District
第一作者: Zhou Chaodong, Lan Hengxing, Burgmann Roland, Warner Timothy A. etc.
联系作者:
发表年度: 2022
摘  要: Land reclamation in the Yan'an New District (YND) on the Chinese Loess Plateau is one of the largest earthworks projects in the world, involving the excavation of loess from ridges and the deposition of the material in adjacent valleys, flattening an area of more than 78 km2. It can take multiple years for the landscape to adjust to the new topography after the earthworks are completed, with subsidence in the fill areas and uplift in the areas of excavation. Understanding the pattern and extent of this differential vertical movement has great importance for ensuring the structural integrity of any infrastructure built on the site. We therefore studied the spatial deformation field of the YND from January 2015 to December 2018 using satellite synthetic aperture radar interferometry (InSAR) technology. Persistent scatterers (PS) and distributed scatterers (DS) were combined in a twotier network to overcome problems with temporal decorrelation of the InSAR phase signals. The derived deformation field was validated with in-situ ground leveling and GNSS measurements, and interpreted using a forward geophysical model. The results indicate that our approach provides a more detailed understanding of the deformation than conventional PSI and SBAS methods. Subsidence of up to 87 mm/yr occurred over about 4.4 km2 of the fill region, and uplift of up to 26 mm/yr in the excavated areas. There is a strong linear relationship between these displacements and prior topographic elevation change. The primary cause of subsidence in fill areas is compaction of remoulded loess. Instantaneous elastic and gradual poroelastic deformation are the main causes of uplift in excavated areas.
英文摘要:
刊物名称: REMOTE SENSING OF ENVIRONMENT
全文链接:
论文类别: SCI