摘 要: |
Accurately estimating actual evapotranspiration (ET) across global land surface is one of the key challenges in terrestrial hydrological cycles and energy flux balance studies. Gridded ET products have the potential for application in ungauged basins, but their uncertainties are possibly large and it remains unclear which one is best for a given basin. The water balance (WB) method provides a direct estimate of basin scale ET, but it cannot be used in ungauged basins where streamflow data are unavailable. Here, we first assess the performance of ET from 10 global ET products against WB ET estimates in 43 large river basins. The paper then uses three indirect evaluation methods [Three Cornered Hat (TCH), Arithmetic Average (AA), and Bayesian Three Cornered Hat] to identify the optimal ET products without the need of prior information, and to generate fusion products combining the ET from multiple products. Using the evaluation results derived from the WB method as the reference, the results show that the three methods have great success in identifying poorer products, suggesting that they are useful in filtering poor ET products in applications. However, the ability of such methods in identifying better ET products degrades slightly. The AA fusion product, which combines ET outputs from multiple products, is marginally better than the best single ET product in many of the 43 basins. Because of its simplicity, it could be used to reduce the uncertainty in ET estimates from multiple products for ungauged basins and regions. |