论文
论文题目: Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and Machine Learning
第一作者: Sun Yuexia, Zhang Shuai, Tao Fulu, Aboelenein Rashad etc.
联系作者:
发表年度: 2022
摘  要: To meet the challenges of climate change, population growth, and an increasing food demand, an accurate, timely and dynamic yield estimation of regional and global crop yield is critical to food trade and policy-making. In this study, a machine learning method (Random Forest, RF) was used to estimate winter wheat yield in China from 2014 to 2018 by integrating satellite data, climate data, and geographic information. The results show that the yield estimation accuracy of RF is higher than that of the multiple linear regression method. The yield estimation accuracy can be significantly improved by using climate data and geographic information. According to the model results, the estimation accuracy of winter wheat yield increases dramatically and then flattens out over months; it approached the maximum in March, with R-2 and RMSE reaching 0.87 and 488.59 kg/ha, respectively; this model can achieve a better yield forecasting at a large scale two months in advance.
英文摘要:
刊物名称: AGRICULTURE-BASEL
全文链接:
论文类别: SCI