论文
论文题目: A CNN-LSTM Model for Soil Organic Carbon Content Prediction with Long Time Series of MODIS-Based Phenological Variables
第一作者: Zhang Lei, Cai Yanyan, Huang Haili, Li Anqi etc.
联系作者:
发表年度: 2022
摘  要: The spatial distribution of soil organic carbon (SOC) serves as critical geographic information for assessing ecosystem services, climate change mitigation, and optimal agriculture management. Digital mapping of SOC is challenging due to the complex relationships between the soil and its environment. Except for the well-known terrain and climate environmental covariates, vegetation that interacts with soils influences SOC significantly over long periods. Although several remote-sensing-based vegetation indices have been widely adopted in digital soil mapping, variables indicating long term vegetation growth have been less used. Vegetation phenology, an indicator of vegetation growth characteristics, can be used as a potential time series environmental covariate for SOC prediction. A CNN-LSTM model was developed for SOC prediction with inputs of static and dynamic environmental variables in Xuancheng City, China. The spatially contextual features in static variables (e.g., topographic variables) were extracted by the convolutional neural network (CNN), while the temporal features in dynamic variables (e.g., vegetation phenology over a long period of time) were extracted by a long short-term memory (LSTM) network. The ten-year phenological variables derived from moderate-resolution imaging spectroradiometer (MODIS) observations were adopted as predictors with historical temporal changes in vegetation in addition to the commonly used static variables. The random forest (RF) model was used as a reference model for comparison. Our results indicate that adding phenological variables can produce a more accurate map, as tested by the five-fold cross-validation, and demonstrate that CNN-LSTM is a potentially effective model for predicting SOC at a regional spatial scale with long-term historical vegetation phenology information as an extra input. We highlight the great potential of hybrid deep learning models, which can simultaneously extract spatial and temporal features from different types of environmental variables, for future applications in digital soil mapping.
英文摘要:
刊物名称: REMOTE SENSING
全文链接:
论文类别: SCI