摘 要: |
Pennisetum flaccidum can be used as a pioneer species for the restoration of degraded grasslands and as a high-quality forage for local yak and sheep in alpine regions. The geographical distribution pattern of soil fungal community can modify that of P. flaccidum. A field survey along 32 sampling sites was conducted to explore the geo-distribution patterns of soil fungal community of P. flaccidum in Tibet. Soil fungal species, phylogenetic and function diversity generally had a closer correlation with longitude/elevation than latitude. The geo-distribution patterns of soil fungal species, phylogenetic and function diversity varied with soil depth. Soil fungal species, phylogenetic and function diversity had dissimilar geo-distribution patterns. Precipitation had stronger impacts on total abundance, species alpha-diversity, phylogenetic alpha-diversity, and function beta-diversity than temperature for both topsoil (0-10 cm depth) and subtopsoil (10-20 cm depth). Furthermore, precipitation had stronger impacts on function alpha-diversity for topsoil, species beta-diversity for topsoil, and phylogenetic beta-diversity for subtopsoil than temperature. The combination of species, phylogenetic and function diversity can better reflect geo-distribution patterns of soil fungal community. Compared to global warming, the impact of precipitation change on the variation in soil fungal community of P. flaccidum should be given more attention. |