女,研究员,博士生导师,1996—2003,相继获得华中农业大学学士和硕士学位; 2003至今,中科院地理资源所获博士学位后留所;2021年晋升研究员,博导。曾在美国西北太平洋国家重点实验室(PNNL)作高级访问学者。现任“环境地理与人类健康研究室”副主任。
社会兼职包括:中国矿物岩石地球化学学会专业委员会委员,全国环境损害司法鉴定国家库首届入选专家,北京、河北、天津、江苏、广州、安徽等省(市)土壤污染防治专家库。
研究成果“工业污染场地修复关键技术与应用”获2021年度中国科学院科技促进发展奖;“复合有机污染土壤与地下水原位修复及智能控制关键技术研究”获中国环境保护产业协会“2021年度环境技术进步奖”二等奖;研究成果“城市工业有机污染场地修复关键技术研究与应用”获得北京市科学技术奖一等奖;2012年入选中科院北京分院“启明星”优秀人才、中国科学院青年创新促进会,获中科院地理所秉维青年人才奖;2011年获中科院王宽诚教育基金“资源与生态环境人才”专项;2009年入选“北京市科技新星”。
研究方向:
从事区域环境风险与控制研究,研究方向:污染物环境行为与健康风险、重金属等污染防控机制、修复材料和技术研发
主要科研项目:
曾主持或参与国家重点研发计划课题、国家自然科学基金、国家自然科学基金区域创新发展联合基金、国家863课题、北京市科技计划重大项目、国家科技支撑计划课题等30余项纵向科研课题及多项地方横向合作课题。
主要学术成就:
1. 系统研究高风险区域砷镉等重金属的地球化学循环过程与机理
一是研究矿区含砷矿物演化作用与环境效应:矿业活动是导致农田土壤污染的重要原因,为了更科学揭示土壤重金属来源和生物可给性,我们结合环境科学和矿物学基础理论和研究方法,应用偏反光显微镜、扫描电镜-能谱分析、电子探针、激光拉曼等手段,通过原位研究矿石、废石、尾渣中砷的矿物相,解析农田土壤重金属来源;结合含砷矿物的演变过程分析砷的生物可给性及其对人体健康的威胁。
二是揭示重金属在超富集植物、农作物和中草药中的累积机制:系统揭示三七中砷的赋存机制,研究发现三七能耐受高浓度砷,As(Ⅲ)为其主要存在形态等。揭示耐砷植物的解毒机制,发现砷超富集植物可通过叶面砷淋失排出体内高浓度砷;水稻和三七根表可通过铁膜形成降低砷吸收;50%以上砷富集于细胞壁以降低对作物的伤害等。
2. 丰富和发展重金属修复原理
一是揭示重金属在土壤-微生物-作物界面的迁移转化途径和调控机制:历史上冶金工业活动向环境中排放了大量含重金属的“三废”,导致我国部分区域农田出现以土壤镉污染为主,同时伴随铜、锌、铅等多重金属复合污染问题,并导致农产品可食部位重金属超标。团队面向粮食安全和土壤环境质量等重大需求,以河北省某重金属复合污染农田为研究区域,应用NanoSIMS、XAFS等现代分析手段,深入研究重金属在土壤-微生物-作物界面的迁移转化途径和调控机制;利用基因水平转移技术培养耐高镉的丛枝菌根真菌,并以生物炭作为载体研制功能型菌剂;利用膨润土和海泡石等天然粘土矿物,探究其对多种重金属的协同吸附过程,通过剥离改性和复配等方式提高其对重金属的钝化效率;尝试基于生物阻控、化学吸附和物理拦截等多重机制,构建非根际-根际双重钝化屏障。研究成果为丰富健康土壤系统调控理论、建设资源高效利用和生态保护修复相结合的技术体系、以及农田污染综合治理模式的探索提供科学依据。
二是探索土壤孔隙尺度修复材料的迁移行为及其与砷的反应过程和机制:土壤孔隙是修复材料与砷发生反应的重要场所,通过建立土壤孔隙物理仿真实验观测平台,借助落射荧光显微镜和微分干涉差显微镜等,发现大孔隙是改性铁基材料胶质迁移的主要区域,孔喉尺度是限制铁基材料在中小孔隙中迁移的主要原因;揭示在pH、Eh和竞争离子等环境因素影响下,铁基材料在孔隙尺度下与砷的反应过程;应用有限元技术对微尺度下复杂流场中铁基材料的迁移反应过程进行模拟,并开展实际砷污染土壤稳定化试验进行验证。研究成果丰富与完善微观尺度下土壤修复原理,为发展稳定化技术提供科学支撑。
3. 绿色高效的污染场地修复技术研发与示范
基于以上机理研究,针对不同实际修复场景,揭示了重金属/有机污染物在不同环境介质中的输入/输出途径与通量、迁移转化过程及演化规律;团队研制了系列绿色高效修复材料,包括铁锰双金属材料、天然矿物材料、生物炭材料等;并发展了低吸收作物-超富集植物间套作修复技术、钝化技术、淋洗技术等,在河北赵县、甘肃白银、广东韶关等不同土壤条件、不同气候条件、不同污染特征的典型农田和工业场地开展技术应用研究。
已在国内外环境领域重要学术期刊发表学术论文100余篇,其中SCI收录论文50余篇,英文专著1部,授权国家发明专利17项,登记2项软件著作权;参与研发的3项土壤污染修复技术入选了《国家先进污染防治技术示范名录》。
部分学术论文(*为通讯作者)
1. Wen Q, Yang X, Yan X*, Yang L, Evaluation of arsenic mineralogy and geochemistry in gold mine-impacted matrices: Speciation, transformation, and potential associated risks[J]. Journal of Environmental Management. 2022, 308(22):114619. https://doi.org/10.1016/j.jenvman.2022.114619
2. Yang X, Liu S, Liang T, Yan X*, Zhang Y, Zhou Y, Sarkar B, Ok Y S. Ball-milled magnetite for efficient arsenic decontamination: Insights into oxidation–adsorption mechanism [J]. Journal of Hazardous Materials. 2022, 427, 128117. https://doi.org/10.1016/j.jhazmat.2021.128117
3. Liu X*, Chen S, Yan X, Liang T, Yang X*, El-Naggar A, Liu J, Chen H. Evaluation of potential ecological risks in potential toxic elements contaminated agricultural soils: Correlations between soil contamination and polymetallic mining activity[J]. Journal of Environmental Management. 2021, 300(2):113679. https://doi.org/10.1016/j.jenvman.2021.113679
4. Yan X, Fei Y, Yang X*, Liang T, Zhong L*, Enhanced delivery of engineered Fe-Mn binary oxides in heterogeneous porous media for efficient arsenic stabilization.Journal of Hazardous Materials. 2021, 424(22):127371. https://doi.org/10.1016/j.jhazmat.2021.127371
5. Wang L, Han X, Liang T*, Yan X, Yang X, Pei X, Tian S, Wang S, Lima E, Rinklebe J. Cosorption of Zn(II) and chlortetracycline onto montmorillonite: pH effects and molecular investigations. Journal of Hazardous Materials. 2021, 424(2):127368.https://doi.org/10.1016/j.jhazmat.2021.127368
6. Zhao W, Yang X**, Feng A, Yan X*, Wang L, Liang T, Liu J, Ma H, Zhou Y. Distribution and migration characteristics of dinitrotoluene sulfonates (DNTs) in typical TNT production sites: Effects and health risk assessment. Journal of Environmental Management. 2021, 287: 112342. https://doi.org/10.1016/j.jenvman.2021.112342
7. Luo Z, Yao B, Yang X, Wang L, Xu Z, Yan X*, Tian L, Zhou H, Zhou Y*.Novel insights into the adsorption of organic contaminants by biochar: A review.Chemosphere. 2021, 287(2):132113. https://doi.org/10.1016/j.chemosphere.2021.132113
8. Yang X, Li J, Liang T, Yan X*, Zhong L, Shao J, El-Naggar A, Guan C, Liu J. Zhou Y. A combined management scheme to simultaneously mitigate As and Cd concentrations in rice cultivated in contaminated paddy soil[J]. Journal of Hazardous Materials. 2021, 416: 125837. https://doi.org/10.1016/j.chemosphere.2021.132113
9. Yao Y, Zhou H*, Yan X, Yang X, Huang K, Liu J, Li L, Zhang J, Gu J*, Zhou Y, Liao B. The Fe3O4-modified biochar reduces arsenic availability in soil and arsenic accumulation in indica rice (Oryza sativa L.)[J]. Environmental Science and Pollution Research. 2021, 28: 18050-18061. https://doi.org/10.1007/s11356-020-11812-x
10. Yan X*, Zhao W, Yang X*,LiuC,ZhouY.Input-output balance of cadmium in typical agriculture soils with historical sewage irrigation in China[J]. Journal of Environmental Management. 2020, 276: 111298. https://doi.org/10.1016/j.jenvman.2020.111298
11. Lin L, Li J, Yang X, Yan X*, Feng T, Liu Z, Deng Y, Zhou H*. Simultaneous immobilization of arsenic and cadmium in paddy soil by Fe-Mn binary oxide: A field-scale study[J]. Elementa-Science of the Anthropocene. 2020, 8(1): 094. https://doi.org/10.1525/elementa.2020.094
12. Yan X*, Fei Y, Zhong L, Wei W. Arsenic stabilization performance of a novel starch-modified Fe-Mn binary oxide colloid[J]. Science of the Total Environment, 2020, 707: 136064. https://doi.org/10.1016/j.scitotenv.2019.136064
13. Yan X*, Shao J, Wen Q, Shen J. Stabilization of soil arsenic by natural limonite after mechanical activation and the associated mechanisms.[J]. Science of the Total Environment. 2020, 708:135118. https://doi.org/10.1016/j.scitotenv.2019.135118
14. Yang S, Yan X*, Zhong L, Tong X. Benzene homologues contaminants in a former herbicide factory site: distribution, attenuation, risk, and remediation implication[J]. Environmental Geochemistry and Health. 2020, 42: 241-253. https://doi.org/10.1007/s10653-019-00342-2
15. Cui Y, Yu H, Wang H, Wang Z*, Yan X*. The numerical modeling of the vapor bubble growth on the silicon substrate inside the flat plate heat pipe[J]. International Journal of Heat and Mass Transfer. 2020, 147: 118945. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118945
16. Wang Z, Si B, Chen S, Jiao B*, Yan X*. A nondestructive Raman spectra stress 2D analysis for the pressure sensor sensitive silicon membrane[J]. Engineering Failure Analysis, 2019, 105: 1252-1261. https://doi.org/10.1016/j.engfailanal.2019.06.089
17. Kong X, Jin D*, Tai X, Yu H, Duan G, Yan X, Pan J, Song J, Deng Y. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem byGordoniasp. strain QH-11 and the microbial ecological effects in soil[J]. Science of the Total Environment. 2019, 667: 691-700. https://doi.org/10.1016/j.scitotenv.2019.02.385
18. Xia W, Du Y*, Li F, Guo G, Yan X, Li C,ArulrajahA,Wang F,Wang S. Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter[J]. Construction and Building Materials. 2019, 210: 278-288. https://doi.org/10.1016/j.conbuildmat.2019.03.195
19. Xia W, Du Y*, Li F, Li C, Yan X, Arulrajah A, Wang F, Song D. In-situ solidification/stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder[J]. Journal of Hazardous Materials. 2019, 369: 353-361. https://doi.org/10.1016/j.jhazmat.2019.02.031
20. Lin L, Zhong L, Yan X*, Yang F. Reducing arsenic concentration inPanax notoginseng via contaminant immobilization in soil using Fe-Ce oxide[J]. Journal of Environmental Quality. 2018, 47(2): 312-317. https://doi.org/10.2134/jeq2017.07.0297
21. Fei Y, Yan X*, Zhong L, Li F, Du Y, Li C, Lv H, Li Y. On-site solidification/stabilization Cd, Zn, and Pb co-contaminated soil using cement: Field trial at Dongdagou Ditch, Northwest China[J]. Environmental Engineering Science. 2018, 35(12): 1329-1339. https://doi.org/10.1089/ees.2017.0355
22. Yan X*, Liu C, Zhong L, Wang J. Combining phytoremediation with soil flushing for arsenic removal from contaminated soil[J]. International Journal of Phytoremediation. 2018, 20(12): 1229-1235. https://doi.org/10.1080/15226514.2018.1460309
23. Li P, Liao X*, Yan X, Ma D, Cui X*, Tao H. Mass transfer model of soil vapor extraction under thermal treatment for removing a volatile contaminant[J]. Environmental Engineering and Management Journal. 2018, 17(1): 101-114. https://doi.org/10.30638/eemj.2018.012
24. Liao X*, Yan X, Ma D, Zhao D, Sun L, Li Y, Fei Y, Li P, Lin L, Tao H. The research and development of technology for contaminated site remediation. In: Luo Y., Tu C. (eds) Twenty Years of Research and Development on Soil Pollution and Remediation in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-6029-8_48
25. Lin L, Yan X*, Liao X, Wang Z. Migration and arsenic adsorption study of starch-modified Fe-Ce oxide on a silicon-based micromodel observation platform[J]. Journal of Hazardous Materials. 2017, 338: 202-207. https://doi.org/10.1016/j.jhazmat.2017.05.027
26. Yan X*, Liu Q, Wang J, Liao X. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil[J]. Journal of Environmental Sciences. 2017, 57: 104-109. https://doi.org/10.1016/j.jes.2016.10.015
27. Liao X*, Li Y, Yan X*. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process[J]. Journal of Environmental Sciences. 2016, 41(3): 202-210. https://doi.org/10.1016/j.jes.2015.06.017
28. Lin L, Yan X*, Liao X, Zhang Y*, Ma X. Arsenic accumulation inPpanax notoginsengmonoculture and intercropping withPteris vittata[J]. Water Air and Soil Pollution. 2015, 226(4): 113. https://doi.org/10.1007/s11270-015-2375-9
29. Yan X*, Lin L, Liao X, Zhang W, Wen Y. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site plantingPanax notoginseng[J]. Chemosphere. 2013, 93(4): 661-667. https://doi.org/10.1016/j.chemosphere.2013.05.083
30. Yan X*, Lin L, Liao X, Zhang W. Arsenic accumulation and resistance mechanism inPanax notoginseng, a traditional rare medicinal herb[J]. Chemosphere. 2012, 87(1): 31-36. https://doi.org/10.1016/j.chemosphere.2011.11.049
31. Yan X, Zhang M, Liao X*. Tu S. Influence of amendments on soil arsenic fractionation and phytoavailability byPteris vittataL[J]. Chemosphere. 2012, 88(2): 240-244. https://doi.org/10.1016/j.chemosphere.2012.03.015
32. Liao X, Ma D, Yan X*, Yang L. Distribution pattern of polycyclic aromatic hydrocarbons in particle size fractions of coking plant soils from different depth[J]. Environmental Geochemistry and Health. 2012, 35(3): 271-282. https://doi.org/10.1007/s10653-012-9482-y
33. Liao X, Yan X*, Wang Y, Li P, Ma D. Environmental risk presented by arsenic contamination of building and facility surfaces in a coking plant[J]. Bulletin of Environmental Contamination and Toxicology. 2012, 88(6): 915-921. https://doi.org/10.1007/s00128-012-0563-5
34. Sun L, Yan X, Liao X*, Wen Y, Chong Z, Liang T. Interactions of arsenic and phenanthrene on their uptake and antioxidative response inPteris vittataL[J]. Environmental Pollution. 2011, 159(12): 3398-3405. https://doi.org/10.1016/j.envpol.2011.08.045
35. Yan X, Liao X*, Chen T. Leaching potential of arsenic fromPteris vittataL. under field conditions[J]. Science of the Total Environment. 2009, 408(2): 425-430. https://doi.org/10.1016/j.scitotenv.2009.09.035
36. Xie Q, Yan X, Liao X*, Li X*. The arsenic hyperaccumulator fernPteris vittataL[J]. Environmental Science & technology. 2009, 43(22): 8488-8495. https://doi.org/10.1021/es9014647
37. Yan X, Chen T*, Liao X, Huang Z, Pan J, Hu T, Nie C, Xie H. Arsenic transformation and volatilization during incineration of the hyperaccumulatorPteris vittataL[J]. Environmental Science & technology. 2008, 42(5): 1479-1484. https://doi.org/10.1021/es9014647
38. Chen T, Yan X, Liao X, Xiao X, Huang Z, Xie H, Zhai L. Subcellular distribution and compartmentalization of arsenic inPteris vittataL[J]. Chinese Science Bulletin. 2005, 50(24): 2843-2849. https://doi.org/10.1360/982005-943
39. 刘思言,杨潇,冯依涛,阎秀兰*. 球磨和煅烧改性褐铁矿对砷吸附的强化机制和效果研究[J],环境科学学报,2022,42(03):418-430.
40. 李俊春,彭鑫,杨潇,佟雪娇,申俊峰,阎秀兰*. 玉米和籽粒苋镉累积特征与根际微生物的关系[J]. 环境科学与技术, 2021, 44(6):11-20.
41. 邵金秋,阎秀兰*,等. 两种水分条件下天然含铁矿物对不同土壤中砷的稳定化效应研究[J], 环境污染与防治, 2021, 43(09):1133-1138.
42. 徐铁兵,刘思言,阎秀兰*,李鸣凤. 某化肥厂土壤与地下水氨氮分布特征及风险评估[J], 环境污染与与防治, 2021, 43(02):211-216.
43. 冯依涛,阎秀兰*,等. 再生铝企业周边农田土壤与农作物重金属含量特征分析[J]. 农业环境科学学报,2020,39(01):87-96.
44. 杨硕,阎秀兰*,冯依涛. 河北曹妃甸某农场农田土壤重金属空间分布特征及来源分析[J]. 环境科学学报,2019,39(09):3064-3072.
45. 温其谦,阎秀兰*,等. 半壁山金矿矿业活动区砷赋存的矿物特征及其对农田土壤砷累积的影响[J]. 环境科学,2019,40(11):5090-5097.
46. 邵金秋,温其谦,阎秀兰*,等. 天然含铁矿物对砷的吸附效果及机制研究[J]. 环境科学,2019,40(09):4072-4080.
47. 邵金秋,刘楚琛,阎秀兰*. 河北省典型污灌区农田镉污染特征及环境风险评价[J]. 环境科学学报,2019,39(3):917-927.
48. 林龙勇,阎秀兰*,杨硕. 铁铈氧化物对土壤As(V)和磷的稳定化效果[J]. 环境科学,2019,40(8):3785-3791.
49. 刘楚琛,阎秀兰*,等. Fenton试剂和活化过硫酸钠氧化降解土壤中的二氯酚和三氯酚[J]. 环境工程学报,2018,12(6):1749-1758.
50. 费杨,阎秀兰*,李永华. 铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J]. 环境科学,2018,039(003):1430-1437.
51. 费杨,阎秀兰*,等. 铁锰双金属材料对As和重金属复合污染土壤钝化修复及其生态效应的影响[J]. 农业环境科学学报,2017,36(1):57-65.
52. 吕浩阳,费杨,王爱勤,阎秀兰*,等. 甘肃白银东大沟铅锌镉复合污染场地水泥固化稳定化原位修复[J]. 环境科学,2017,9:1-15.
53. 单天宇,刘秋辛,阎秀兰*,等. 镉砷复合污染条件下镉低吸收水稻品种对镉和砷的吸收和累积特征[J]. 农业环境科学学报,2017,36(10):1938-1945.
54. 费杨,阎秀兰*,等,单天宇. 铁锰双金属材料对砷和重金属复合污染土壤的稳定化研究[J]. 环境科学学报,2016,36(11):4164-4172.
55. 费杨,阎秀兰*,等. 不同水分条件下铁基氧化物对土壤砷的稳定化效应研究[J]. 环境科学学报,2015,35(10):3252-3260.
56. 刘秋辛,阎秀兰*,等. 不同水分条件对蜈蚣草修复砷污染土壤的影响[J]. 环境科学,2015,8:3056-3061.
57. 林龙勇,阎秀兰*,等. 三七对土壤中镉、铬、铜、铅的累积特征及健康风险评价[J]. 生态学报,2014,34(11):2868-2875.
58. 林龙勇,于冰冰,廖晓勇,阎秀兰*,张玉秀. 三七及其中药制剂中砷和重金属含量及健康风险评估[J]. 生态毒理学报,2013,(02):244-249.
59. 王建益,张杨珠,阎秀兰*,等. 不同吸附材料对土壤淋洗滤液中砷的去除效果研究[J]. 湖南农业科学,2013,09:46-49.
60. 王玉哲,阎秀兰*,等. 焦化工业场地建筑物和生产设施表面Pb的赋存特征及健康风险[J]. 环境科学,2011,32(3):255-63.
61. 于冰冰,阎秀兰*,等. 用于表征土壤中三七可利用态砷的化学提取剂的筛选[J]. 农业环境科学学报,2011,30(8):1573-1579.
62. 阎秀兰*,等. 药用植物三七对土壤中砷的累积特征及其健康风险[J]. 环境科学,2011,32(3):311-317.
63. 赵丹,阎秀兰,等. 不同化学氧化剂对焦化污染场地苯系物的修复效果[J]. 环境科学,2011,32(3):280-287
64. 阎秀兰等. 防止植物样品中无机砷形态转化的样品保存方法[J]. 植物营养与肥料学报,2005,11(6):855-857.
65. 阎秀兰等. 土壤样品保存过程中无机砷的形态变化及其样品保存方法[J]. 环境科学学报,2005,25(7):976-981.
66. 陈同斌,阎秀兰等. 关于hyperaccumulator中文译名的探讨[J]. 环境科学学报,2005,25(9):1148-1150.
67. 陈同斌,阎秀兰等. 蜈蚣草中砷的亚细胞分布与区隔化作用[J]. 科学通报,2005,50(24):2739-2744.
招生专业:环境科学
招生方向:环境地理学
联系方式:
中国科学院地理科学与资源研究所,北京市朝阳区安外大屯路甲11号 邮编:100101
电话:010-64889796 (办)
邮箱:yanxl@igsnrr.ac.cn
更新日期:2022年5月31日