论文
论文题目: Composition and sources of particulate matter in the Beijing-Tianjin-Hebei region and its surrounding areas during the heating season
第一作者: Dao Xu, Di Shiying, Zhang Xian, Gao Panjun etc.
联系作者:
发表年度: 2022
摘  要: This paper aimed to analyze the composition and pollution sources of particulate matter (PM) in the BeijingTianjin-Hebei region and its surrounding areas (henceforth the BTH region) during the heating season to support the mitigation and control of regional air pollution. Manual monitoring data from the China National Environmental Monitoring Network for Atmospheric PM in the BTH region were collected and analyzed during the 2016 and 2018 heating seasons. The positive definite matrix factor analysis (PMF) model was used to analyze the PM sources in BTH cities during the heating season. The main PM components were organic matter (OM), nitrate (NO3-), sulfate (SO42-) and ammonium salt (NH4+). Direct emission sources have decreased since 2016, indicating the effectiveness of governmental controls on these sources; however, secondary pollution showed an increasing trend, suggesting control measures should be strengthened. Daily regional average concentrations of OM, SO42-, NH4+, elemental carbon (EC), chloride (Cl-) and trace elements all showed similar trends. When air quality worsened, the concentrations of the main PM components increased, but trends of change varied among components. In 2018, concentrations of OM and chloride were highest in the Taihang Mountains, and NO3 concentrations were highest in Anyang, Hebi, Jiaozuo and Xinxiang. The SO42- concentration was highest in the southern section of the Taihang Mountains. The NH4+ and EC concentrations were generally highest in the central and southern regions. The concentration of crustal substances was highest in some cities in the north and central parts of the BTH region. In the 2018 heating season, the pollution level of five transmission channels showed an increasing trend in the Northwest, Southeast, Yanshan, South and Taihang Mountain channels. These findings provide a scientific basis for the continued management of atmospheric PM pollution.
英文摘要:
刊物名称: CHEMOSPHERE
全文链接:
论文类别: SCI