论文
论文题目: A new prediction method of industrial atmospheric pollutant emission intensity based on pollutant emission standard quantification
第一作者: Ju Tienan, Lei Mei, Guo Guanghui, Xi Jinglun etc.
联系作者:
发表年度: 2023
摘  要: Industrial emissions are the main source of atmospheric pollutants in China. Accurate and reasonable prediction of the emission of atmospheric pollutants from single enterprise can determine the exact source of atmospheric pollutants and control atmospheric pollution precisely. Based on China's coking enterprises in 2020, we proposed a quantitative method for pollutant emission standards and introduced the quantification results of pollutant emission standards (QRPES) into the construction of support vector regression (SVR) and random forest regression (RFR) prediction methods for SO2 emission of coking enterprises in China. The results show that, affected by the types of coke ovens and regions, China's current coking enterprises have implemented a total of 21 emission standards, with marked differences. After adding QRPES, it was found that the root mean squared error (RMSE) of SVR and RFR decreased from 0.055 kt/a and 0.059 kt/a to 0.045 kt/a and 0.039 kt/a, and the R-2 increased from 0.890 and 0.881 to 0.926 and 0.945, respectively. This shows that the QRPES can greatly improve the prediction accuracy, and the SO2 emissions of each enterprise are highly correlated with the strictness of standards. The predicted result shows that 45% of SO2 emissions from Chinese coking enterprises are concentrated in Shanxi, Shaanxi and Hebei provinces in central China. The method created in this paper fills in the blank of forecasting method of air pollutant emission intensity of single enterprise and is of great help to the accurate control of air pollutants. (C) Higher Education Press 2023
英文摘要:
刊物名称: FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING
全文链接:
论文类别: SCI